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Editor’s Note

This paper is the first in what we hope will become a series. ‘‘Classics Revisited’” will
appear periodically in the TRANSACTIONS; these papers will reevaluate the substance and im-
portance of recognized classics, in terms of their impact on modern microwave technology.
We expect that the tutorial value of these papers, and their documentation of the creative
process in our technology, will make them very valuable to our readership.

This series was proposed by Dr. Gupta, so it is appropriate that he present the first paper.
Others interested in preparing a paper in this series should contact the MTT editor or Dr.
Gupta. Because such papers are part historical and part technical, only papers that exhibit a
high degree of both technical and scholarly value will be accepted.

Power Gain in Feedback Amplifiers,
| a Classic Revisited

Madhu S. Gupta, Fellow, IEEE

Abstract—This paper is a tutorial review of a classic paper of
the same title authored by Samuel J. Mason, and published in
1954. That paper was the first to define a unilateral power gain
for a linear two-port, and to prove that this gain is invariant
with respect to linear lossless reciprocal four-port embeddings,
thereby making it useful as a figure of merit intrinsic to the
device. The significance of the paper stems from the fact that
(a) it introduced a new fundamental parameter that is now used
to evaluate all three-terminal active devices, (b) it initiated work
on a new line of inquiry, which has led to the discovery of many
other invariants that describe the essential constraints on the
behavior of networks, and (¢) its results form the foundation
for many of the basic ideas currently in use, including those of *
the cutoff frequency of transistors, activity of devices, stability
of amplifiers, and device invariants. The present article brings
that original paper up-to-date, presents a tutorial exposition of
its contents in a modern form, and points out its significance
and applications in microwave engineering. The subsequent
advances in the subject area of the paper are also summarized
so that the original paper can be placed within a broader con-
text, and understood with a more general perspective.

I. INTRODUCTION

HIS PAPER is a tutorial review of a classic paper,
having the title ‘‘Power Gain in Feedback Ampli-
fiers,”” authored by Samuel J. Mason, and published in
1954 [1]. In that paper, Mason defined a unilateral power
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gain for a linear twoport, and discussed some of its prop-
erties. The unilateral power gain U is the maximum power
gain that can be obtained from the twoport, after it has
been made unilateral with the help of a lossless and recip-
rocal embeddding network (which provides the required
feedback). Among the many interesting properties of U
related to the frequency characteristics, activity, and sta-
bility of the twoport, perhaps the most important is the
result due to Mason that U is invariant to a class of trans-
formations (linear lossless reciprocal embeddings), and is
therefore a characteristic inherent to the device. Conse-
quently, U is useful as a figure of merit of the device,
both by itself, and through other quantities that can be
deduced from it. The title of Mason’s paper does not fully
indicate its contents and applicability.

Although Mason’s paper originally appeared in a jour-
nal devoted to circuit theory, its results have been of most
interest to the microwave device community. This is be-
cause in practice the value of the device power gain U
becomes unimportant when U is either smaller than, or
much larger than, unity; U = 1 happens to occur in the
microwave frequency range for most state-of-the-art ac-
tive devices of the last three decades.

The present paper is intended to be an exposition of
both the subject matter of Mason’s paper, as well as its
applications and generalizations that have appeared in the
subsequent work in this field. There are three parts to this
paper. The first part is a tutorial explanation of the con-
tents of Mason’s paper, explaining the problem posed by
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Mason, his line of reasoning, and the results obtained.
The second part of this paper points out the significance
and utility of Mason’s paper, in light of its later applica-
tions. The third part of this paper summarizes the ad-
vances in the search for network invariants that have been
made since the appearance of Mason’s paper; these ad-
vances constitute the framework within which Mason’s
results can be understood with a more general perspec-
tive.

II. MasoN’s INVARIANT U

At the time of Mason’s work in 1953, transistors were
only five years old; were fabricated in germanium with
alloyed junctions [2]; were the only successful solid-state
three-terminal active device; were beginning to be devel-
oped for RF applications; and were limited to frequencies
in and below the VHF range. According to the introduc-
tion in his paper [1], Mason was motivated by the desire
to discover a figure of merit for the transistor. This search
led him to identify the unilateral power gain of a linear
twoport as an invariant figure of merit of a linear twoport.

A. Mason’s Objective and Approach

As Mason’s paper deduced a maximum invariant power
gain, one might expect the starting point of the paper to
be an expression for the power gain of a linear twopott,
which is then maximized and proved to be invariant. (Such
an approach can be found in some textbook treatments of
the subject [3].) Instead, Mason begins the paper with a
search for any arbitrary invariant network property that
might happen to exist, and once it is found, identifies it
as a power gain. His approach therefore not only finds the
invariant power gain, but also demonstrates that the uni-
lateral power gain is both inevitable and the only device
characteristic that is invariant under a specified class of
transformations.

Since the figure of merit of a device should be an in-
herent characteristic of the device, and not merely an ar-
tifact of its environment, it must be invariant with respect
to some types of changes in the environment. Accord-
ingly, Mason’s stated goal in the paper is to look for a
property of the linear twoport that is invariant with respect
to a specified class of transformations. A complete state-
ment of this problem should include both the specification
of the device and its environment, as well as the types of
changes in the environment of the device (the ‘‘transfor-
mations’”) under which the desired figure of merit is to
remain invariant. Mason’s paper therefore proceeds along
the following major steps:

(a) It stipulates the manner in which the device will be
connected to its environment, and describes its be-
havior in terms of its twoport network parameters
at a single frequency.

(b) It represents a change in the device environment as
an embedding network and defines the permissible
changes through some constraints imposed on the
embedding network.
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(c) It demonstrates that the permissible transforma-
tions can be made up from a set of just three ele-
mentary transformation.

(d) It then deduces the form that a network property
must have in order for it to be an invariant with
respect to each of the three elementary transfor-
mations. ‘

(e) The resulting form is then found to be a power gain,
applicable when the device has been embedded in
a network that makes the embedded device unilat-
eral.

B. Problem Definition

The object whose properties are under study is a linear
twoport network, and will be called a ‘‘device’’ hereafter,
in anticipation of the fact that the results will subse-
quently be applied to transistors and to other active de-
vices. The device under consideration is constrained by
three requirements:

(a) It has only two ports (at which electrical power can
be transferred between the device and the remain-
der of the universe).

(b) It is linear (in the relationships that it imposes be-
tween the electrical currents and voltages at the two
ports).

(¢) It is used in a specified manner (connected as an
amplifier between a linear one-port source network
and a linear one-port load) as shown in Fig. 1(a).

Since it is otherwise unrestricted, the device can be active
or passive, lossy or lossless, reciprocal or non-reciprocal,
symmetric or asymmetric, and spatially distributed or
lumped.

Although the search for an invariant property of the de-
vice can be carried out in terms of any type of network
parameters (such as the scattering parameters or immit-
tance parameters), the impedance parameters will be used
here, so as to retain the flavor of the original line of rea-
soning used by Mason. Let the open-circuit impedance
matrix of the device be represented by Z.

Any transformation of the device environment can be
conceptualized as an embedding network, as shown in
Fig. 1(b), through which the two ports of the device are
accessed. The permissible class of transformations can be
defined in terms of constraints imposed on the embedding
network. Mason defined the problem as being the search
for device properties that are invariant with respect to
transformations as represented by an embedding network
satisfying the four constraints that it be (a) a four-pott,
(b) linear, (c) lossless, and (d) reciprocal.

C. Problem Solution

Mason next demonstrated that all permissible transfor-
mations that satisfy the above constraints can be synthe-
sized from just three elementary transformations that are
carried out sequentially; this is equivalent to representing
any permissible embedding network by a set of three
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Fig. 1. The given linear twoport device. (a) Connected as an amplifier
between the linear one-port source and load networks. (b) Embedded within
a linear lossless reciprocal four-port. (¢) Matched to the source and load
through linear lossless reciprocal tuners.

embedding networks nested within each other. The ele-
mentary transformation are called reactance padding, real
transformation, and inversion. In circuit terms, the three
transformations can be described by the lossless embed-
ding networks shown in Fig. 2. Mathematically, they can
be defined by expressing the Z’ matrix of the transformed
device in terms of the Z matrix of the device prior to the
transformation:
(a) Reactance Padding:

Zy Zp B Zy +jxu Zip + jxp M
/ Zy Zp Ly + jxa Iy + jay
where all x;; are real.
(b) Real Transformations:
Zy Zj, | M A Zy Zp Ry nyy )
Zy Zp Ry Hp 2y Zy Ry np
where all n; are real.
(¢) Inversion:
-1
Zh Zo| |Zu Zs 5
Zy Zp Zy Zyp

The embedding networks shown in Fig. 2 are only illus-
trative and not unique; the above transformations can also
be achieved by other embedding networks. )
Mason’s search for an invariant property of the device
proceeds by inquiring as to the nature of the quantities
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Fig. 2. The three elementary transformations that can synthesize an arbi-

trary linear lossless reciprocal four-port embedding.

that remain invariant under each of the three elementary
transformations:

(D

The reactance padding transformation leaves the
following two matrices unchanged

[Z — Z] and [Z + Z¥%] G))

where ¢ denotes matrix transposition, and * denotes
the complex conjugate. Indeed, all quantities left
unchanged by this transformation are either the ele-
ments of these two matrices, or are functions
thereof. Consequently, any property of the device
that is invariant under the reactance padding trans-
formation must be a function of only these two
matrices.

(2) The real transformation leaves unchanged the de-
terminant of the matrix
(Z - Z]1(Z + Z¥17. 5)
In fact, this determinant is the only function of the
two matrices in (4) that has this property. As a re-
sult, the ratio of determinants
det [Z — Z
[ ] ©)
det [Z + Z*]
is invariant under both reactance padding and real
transformations.
(3) Finally, the inversion transformation leaves the

magnitudes of the two determinants in the above
ratio, and the sign of the one in the denominator,
unchanged. Hence the quantity invariant under all
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three elementary transformations is

_ |det [Z — Z,]I
T det[Z + 2%
_ |Zy, — Z21|2 ‘
4 Re [Z;] - Re [Zp] — Re [Z;] - Re [Z,D°
@)

The quantity U discovered in this manner is the desired
invariant property of the device, and the principal result
of Mason’s paper.

D. Alternative Expressions for the Invariant
The form of U remains unchanged when it is expressed
in terms of the admittance parameters of the two-port:
U= | Yo — Y|
4 (Re [Yy1] * Re [¥n] — Re [Yyp] * Re [Yy])

®

An expression for U in terms of the scattering parameter
matfix S can be found [4] by substituting for the Z matrix
the identity

Z=@1+85a-5" ©
where 1 is a unit matrix. With this substitution,
‘S12 - S21‘2
= S 10
v det [1 — §$5%] (10)

Still another useful form of the expression for U is in terms
of the stability factor k, defined as

i |Sul®> = 18nl* +[SuSn —
2] 818l
'Since the stability of an active twoport is of prime impor-

tance, its k may already be known or determined; then U
can be conveniently found from

_ [(S21 /S12) — 1]
2k| 851 /S12] = 2 Re [831/81]

K
k 21 12|

(11)

U

(12)

III. THE SIGNIFICANCE OF MASON’S INVARIANT U

Having established that the quantity U in (7) is an in-
variant, following Mason, we next turn to identifying its
physical significance. A physical meaning can be ascribed
to U in a number of different ways: as a power gain max-
imum, as a measure of device activity, and as an invariant
under a class of bilinear M6bius transformations. Each of
these interpretations of U is examined below in detail.

A. U as a Gain Maximum

One interpretation of U is as a maximum of a power
gain of the linear twoport device under some specific re-
strictive conditions. Consider the device embedded in a
fourport network, as shown in Fig. 1(b), and used as an
amplifier between a linear source network having a source
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impedance Z; and a linear load network having an imped-
ance Z;. Then, U is the maximum achievable value of the
power gain of this amplifier, provided:

1) The embedding network is a linear lossless recip-
rocal fourport.

2) The embedded device (i.e., the composite of the
given device and the embedding network) is uni-
lateralized.

3) There is no other connection between the source and
the load networks, except through the unilateralized
device.

4) The source and load impedances Z; and Z; are pas-
sive, and are the variables with respect to which the
gain is maximized.

In order to comprehend this interpretation of U, and the
import of the restrictive conditions imposed in gain max-
imization, it is necessary to understand the concept of
unilateralization first. This is discussed next.

1) Unilateralization: What is unilateralization? Uni-
lateralization of a given linear twoport is the process of
embedding the given device within an embedding net-
work as shown in Fig. 1(b), such that the embedded de-
vice has no reverse transmission of signals, from the out-
put port to the input port, i.e.,

Zi, =0 (13)

where Z' is the open-circuit impedance matrix of the
transformed device (i.e., the composite of the device and
the embedding network), defined at the external ports of
the embedding network.

How can unilateralization be carried out? A given de-
vice can be unilateralized in numerous ways, and the
embedding network needed to unilateralize it is not
unique. A number of different practical methods of uni-
lateralization are discussed by Cheng [5], along with ex-
amples and uses of unilateralization for both electron tubes
and transistors. For the sake of conceptual understanding,
one possible method of unilateralization is shown in Fig.
3. In this method, the embedding network consists of just
a reactance and an ideal transformer. As a result of its
simplicity, the manner in which the unilateral nature of
the transformed device comes about can be easily under-
stood in this scheme. The added reactance at the output
port brings about a phase change in the output voltage
such that it is in phase (or exactly out of phase) with the
input voltage when I; = 0. The turns ratio (and the po-
larity) of the transformer in the feedback path is then ad-
justed so that it introduces a voltage at the input port to
cancel that due to the reverse transfer through the non-
unilateral device. Mathematically, the reverse transfer
impedance of the embedded device of Fig. 3 can be found
as

Ziy = Zyy — nZy + jxo). (14)

This can be made to vanish by selecting x, so as to equate
the angles of the two complex terms on the right hand
side, and then selecting » to make their magnitudes equal.
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Fig. 3. One possible method of unilateralizing a given linear twoport by a
linear lossless reciprocal four-port embedding.

Why is unilateralization worthy of attention? Unilater-
alization of a given linear twoport is useful both in prac-
tice and in concept. Amplifier designers often add feed-
back elements (i.e., an embedding network) to an active
device so as to prevent a reverse traveling wave in a cas-
cade of twoports, and so as to allow tuning or impedance
matching to be carried out at the output port of the twoport
without influencing the tuning or matching at the input
port. Conceptually, unilateralization allows the twoport
performance to be analyzed and understood more simply
due to the decoupling of the input side network from the
output side network.

2) Gain Maximization after Unilateralization: The
interpretation of U as a gain maximum can now be under-
stood. Consider the device embedded within a unilater-
alizing network that meets the specified conditions, as
shown in Fig. 1(b), and let the open-circuit impedance
matrix of the transformed device be represented by Z’.
Since the transformed device is unilateral,

Z, = 0. (15)

Consider next the power gain of the transformed device,
operated between the source and the load networks. If the
source and the load networks are varied for maximizing
the power gain, their impedances will attain a value equal
to the complex conjugate of the input and the output
impedances of the device, respectively, provided both Re
[Z{,] and Re [Z;,] are positive; i.e., the unilateralized de-
vice is absolutely stable. Under these conditions, the
power gain is given by

_ 123,
4 Re [Zi] * Re [Z5]

But, from (7), this is also the value of Mason’s invariant
U for the transformed device under the condition (15).
This establishes that the maximum power gain of the
transformed device equals the U of the device. Moreover,
since this argument holds for every lossless reciprocal
embedding network, and since the U value is invariant to
the embedding, every unilateralizing embedding must re-
sult in the same value of maximum power gain for the
device, and this value is equal to the U of the device.
Under what conditions is the unilateralized device ab-

(16)

solutely stable [6] (i.e., the real parts Re [Z];] and [Z},]
of its open-circuit input and output impedances are both
positive)? It is clear by inspection that the embedding
network of Fig. 3 leaves Re [Z,,] unchanged, and that
Re [Z;;] and Re [Z,,] must have the same sign if U is
positive. Therefore, if Re [Z,,] and U were known to be
positive, an embedding network could be found that would
make the device unilateral and absolutely stable. By mov-
ing the reactance jX, from the output port to the input port
in Fig. 3, a similar conclusion can be reached if both Re
[Z,] and U are known to be positive. Finally, if U > 1,
both Re [Z];] and Re [Z},] can be made positive regardless
of the sign of Re [Z;;] and Re [Z,,]. In conclusion, the
necessary and sufficient conditions for the unilateralized
device to be absolutely stable are as follows:

(1) Uis positive, and at least one of the two resistances
R, = Re [Z;;] and Ry, = Re [Z,,] is positive; or

(2) U is greater than unity (when neither R, nor R,, is
positive).

3) Constraints Imposed in Gain Maximization: The
conditions imposed on the embedding network, under
which U has been shown to be a gain maximum, are very
important for the proper interpretation of U, since U is
neither the only gain maximum that can be defined (i.e.,
other gain maxima also exist), nor the global or the high-
est maximum (i.e., power gain values higher than U can
be achieved by proper embedding). These two statements
are now briefly explained.

U is not the highest power gain that can be obtained
from the device in an arbitrary circuit. Indeed, if the de-
vice is active (U > 1), the maximum power gain obtain-
able from the device is infinite, which is in evidence when
the device is used in an oscillator circuit. The power gain
of a linear twoport in a fourport embedding will neces-
sarily have a finite maximum value with respect to the
source and load impedances only under certain condi-
tions, e.g., when the device is passive, or if active, it is
absolutely stable and does not have a feedback path be-
tween the output and the input ports. It is clear that a gain
maximum can be defined only if some restrictions are
placed on the device and/or its embedding network.

Consider next the need for the conditions imposed on
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the fourport embedding network in defining U. Each of
the two constraints, of losslessness and reciprocity, is
essential for defining a gain maximum for an active device
in general. Indeed, Leine [7] shows by examples that if
the embedding is lossless but not reciprocal, or if it is
reciprocal but not lossless, the maximum power gain of
the device in the circuit of Fig. 1(b) is unbounded if the
device is active. The two constraints under which U is a
maximum gain are thus also the minimum conditions for
the existence of a finite power gain maximum when the
device is embedded in an arbitrary fourport.

Finally, the importance of the unilateralization require-
ment can be demonstrated by a counter-example. In the
special case where the fourport embedding network con-
sists of two decoupled twoports, one at each port of the
device, as shown in Fig. 1(c), the conditions for the ex-
istence of a gain maximum can be expressed entirely in
terms of the device parameters, without imposing the re-
quirements of losslessness and reciprocity on the embed-
ding network. The stability factor k defined in (11) serves
as a test of stability, and if its value at a given frequency
is greater than 1, the device is absolutely stable, thereby
ensuring that the maximum gain is finite. In this case,
however, the maximum power gain (attained under si-
multaneous conjugate matched conditions at each port) is

(8]
Gor = QU — 1) + 2JUU - 1) 17

and this can be larger than U. In the limit of large U, this
approaches the value 4U. It is clear that U is not a gain
maximum unless the device is first unilateralized by the
embedding network.

4) Other Gain Maxima: A clearer understanding of the
meaning and significance of the unilateral power gain U
can be gained by comparing it with other kinds of power
gain maxima determined under different conditions. A
number of different power gain maxima have been defined
in the literature, and are used in microwave work, from
which Mason’s unilateral power gain should be distin-
guished. These include the maximum available power gain
G, [3], Rollet’s maximum stable power gain G, [9],
and Kotzebue’s maximally efficient power gain G, [10].
Their definitions and expressions are compared in Table
I. The range of applicability and utility of these various
power gain maxima are different. As an example, for
many transistors at low frequencies, where Rollet’s [9]
stability factor k < 1, G, becomes infinite and is there-
fore defined only at higher frequencies where k > 1; the
other three gain maxima of Table I exist even if k < 1.
In particular, U is defined regardless of whether the de-
vice is active or passive, and absolutely stable or poten-
tially unstable.

B. U as a Measure of Activity

The unilateral power gain U is not useful as a design
goal or guideline, unless the active device is actually to
be unilateralized. Its utility stems from the fact that U is

869

intimately related to the property of device activity. In
fact, it not only serves as an indicator of activity in the
device, but also as a quantitative measure of the device
activity. This direct relationship with the property of ac-
tivity makes U a quantity of fundamental importance.

The conditions under which a linear twoport device is
active can be expressed in many different forms [6], and
in terms of different network parameters. When expressed
in the frequency domain, for real sinusoidal signals (i.e.,
at a single frequency s = 0 + jw lying on the imaginary
axis in the complex frequency plane), and in terms of the
impedance matrix of the twoport at that frequency, the
condition is as follows. The twoport is active if any of the
following conditions holds [6]:

(1) R11 = Re [le] <0 (18a)
(2) Ry, =Re[Zp] <0 (18b)
@) det [Z + Z}] < O. (18¢c)

A device satisfying one (or both) of the first two con-
ditions is said to have a ‘‘negative-resistance activity.”’
By contrast, a device meeting only the third condition (and
neither of the first two) is said to have a ‘‘transfer activ-
ity.”” The transfer active twoports are of particular im-
portance because they form the backbone of electronics,
and include such devices as triodes, pentodes, bipolar
junction transistors, and field-effect transistors. We now
show that the condition of transfer activity can be ex-
pressed entirely in terms of U as follows.

This condition, given in (18c), can be written in the
following form after some algebraic simplification:

4 (Ry1 Ry, — R12R21) —1Zp - Zy* <0 (19

where R;; denotes the real part of Z;. If the given device
has no negative resistance activity after it has been uni-
lateralized by a linear lossless reciprocal fourport embed-
ding, it follows that

R), >0 and R} > 0. (20)

For such a device, Mason’s unilateral gain U must nec-
essarily be positive, since (16) shows that U is positive
after unilateralization, and U is invariant to the embed-
ding. But if U > 0, it follows from (7) that the first term
on the left-hand side of (19) is positive; then the condition
of activity in (19) can be written with the help of (7) as

U>1 (21

The magnitude of U can therefore be used to test for the
presence of transfer activity in a twoport. Moreover, if
the U of a given device is a function of frequency (which
is the case for all physical devices), the value of U can be
used to identify the frequency range over which the device
remains active.

C. U as a Canonical Property

One particularly illuminating method of understanding
a characteristic property shared by all members of a set is
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TABLE I
LINEAR TWOPORT POWER GAIN MAXIMA USED AS FIGURES OF MERIT

Expression in Expression in

Symbol Name Definition or Conditions Immittance Parameters [S] Parameters
Maximum Transducer gain'” G, maximized with respect | Yo, /Yo |? N
Available to I'g and I';, (or available gain with respect x4+ N2 -1 where S5,
G Gain to T'y) =kt VvE* - 1)
2 Re [Yy;] Re [Yn] — Re {1, 1yy] 12
x =
[ Y1z Y|
Maximum Device just stabilized [i.e., k = 1 obtained®] Y, S5,
G Stable Gain by resistive loading; then G, maximized with Y. 5.
respect to I'g and T';.. 2 1z
Maximum Power gain® G reached when the power S 2 1
Efficient added by device (for a fixed input power) has | Yol — | Vol Spz
G Gain been maximized with respect to T';. 21 12 -
me 4Re [V Y] — 2Re [Y3 Ya] — 2| Yyl 2<k S 1)
SlZ
2
Unilateral G, maximized with respect to I'g and I', & B
Power after device has been unilateralized (i.e., S, 2 S
i i i [ ¥, = Yyl 12
U Gain = 0 attained) by lossless reciprocal
embedding. 4 (Re [Y11] Re [¥] — Re [¥1;] Re [Yy]) S Sa1
2k S_ — 2Re 5.
12 12

A =T [8u 2 — [T

DOTransducer power gain G,([S], g, T'p) =

1 - |Sn|2 — |S2:z|2 + |SnSzz -

@Kurokawa’s stability factor k = 2150l 5]
12 21

|S21I2(1 - |FL|2)
|1 - Szerlz - lSu — TSy S0 = 512521)|2

®power gain G(IS], T;) =

I(t — SuTe)(1 — 8puTy) — 8128, Tl )?
S128|*

through the use of a canonical representation of the set.
A canonical form for a class of networks is the clearest or
simplest form, employing the least possible number of pa-
rameters, to which the given class of networks can be re-
duced by the allowed type of transformations, and which
displays the common characteristics of the class, or the
constraints imposed by them, in an easily understood way.
Consider the set of all twoports that can be formed from
the given twoport by linear lossless reciprocal transfor-
mations of the type shown in Fig. 1(b). A characteristic
property of the set, established by Mason, is that every
member of the set has the same unilateral power gain U.
Since U is claimed to be the only invariant property of
this set, it should be possible to develop a canonical net-
work for the set with only one parameter. Such a ‘‘mini-
mum’’ form for the above mentioned set of twoports is
developed in this section. To keep the discussion intui-
tive, the following development employs the open-circuit
impedance matrix of the twoports; an alternative ap-
proach employing scattering matrix is also available in the
literature [11].

A linear twoport with a given impedance matrix can be
represented by the equivalent circuit shown in Fig. 4(a).
This twoport can be reduced to the canonical form shown
in Fig. 4(f) through the use of linear lossless reciprocal
transformations. The successive steps in this reduction are
illustrated schematically in Fig. 4, and are as follows:

(i) As demonstrated in Section III-A, it is always pos-

sible to find a lossless reciprocal transformation which will
make the twoport unilateral, as shown in Fig. 4(b). One
such transformation is the feedback network of Fig. 3.
The impedance matrix elements of the resulting unilateral
twoport are given by

Zy =2y — (R12/R22)Zzl (22a)
Zyy = Zy, + j[(Ryn/Ri) X1y — Xl (22b)
Zy =2y — Zy. (22¢)

(if) The imaginary parts of the two driving point
impedances Zj, and Zj, can be reduced to zero by reac-
tance padding at each of the twoports, which is also a
lossless reciprocal transformation. As a result of this
transformation, the two impedances become

Riy = Re [Z}]] (232)

R}y, = Re [Z})]. (23b)

(iii) The twoport can be impedance matched to a de-
sired real reference impedance R, at both ports, with the
help of a real transformer at each port, which is also a
lossless reciprocal transformation. The only element of
the impedance matrix that is left flexible after this trans-
formation is

R,
.. B/ 24
21 TR Z3 (24)
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Fig. 4. Deduction of the canonical network for the set of twoports created
by lossless reciprocal embeddings of a given twoport.

(iv) Finally, a lossless length of transmission line, hav-
ing a characteristic impedance R, can be added at either
port, and its length adjusted, until the twoport has a real
transfer impedance. The resulting twoport is the canonical
form of Fig. 4(e), and has an impedance matrix

Z, =
lzé’l‘ Ro

Rolzll - Zl2|
VR, Ry — R, Ry

which can be demonstrated with the help of (24) and (7).
The canonical network of Fig. 4(f) is the circuit repre-
sentation of the impedance matrix in (25). It is clear that
the canonical form of the twoport requires only a single
real parameter for its specification.

The canonical representation provides an alternative
interpretation for Mason’s invariant U of a given twoport.
The scattering matrix of the canonical network can be
found from the impedance matrix, and is given by

(25a)

where

Zy = =2R,\JU  (25b)

S—[O 0} 26
c = _,————UO )
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As might have been anticipated, if a given twoport is
transformed, by a lossless reciprocal transformation, to a
unilateral, phase-shift-less, matched twoport, matched at
each port to a resistive reference impedance, the scatter-
ing matrix of the resulting twoport is completely de-
scribed by the forward transfer function. By definition of
scattering parameters, this transfer function is equal to the

square-root of the unilateral power gain.

D. U as an Invariant of Bilinear Transformations

From a formal and abstract viewpoint, any embedding
network can be viewed as simply a mathematical trans-
formation applied to the terminal characteristics of the
device embedded within it. The fact that the U of the
embedded network does not change when the embedding
device is restricted to be of certain types suggests the
possibility that U may be interpreted as a geometrical or
an algebraic property that is invariant under the class of
mathematical transformations representing the permissi-
ble embeddings. Such an interpretation of U is described
in this section. For clarity of exposition, the line of rea-
soning is presented here with emphasis on its essential
elements and plausibility rather than on the highest pos-
sible rigor and generality. Accordingly, the twoport under
consideration in this section may be assumed to be passive
so as to avoid complications (e.g., twoport instability on
matching, and reflection coeflicients that lie outside the
unit circle), although the results can be generalized.

1) A Matched Circuit Model: Bilateral impedance
matching of a linear twoport consists in embedding the
given twoport such that the embedded network has the
following property: with either of its ports terminated in
the reference impedance, the input impedance looking into
the other port is equal to the same reference impedance.
In practical applications of linear twoports, it is common-
place to attempt to carry out this impedance matching at
each port without introducing either additional losses or
nonreciprocal elements. Theoretically, a lossless recip-
rocal embedding network can always be found that will
make the twoport bilaterally matched. Consider the given
twoport embedded in one such matching network, as
shown in Fig. 5(a). The bilateral matching of the twoport
is most readily apparent when the twoport is described in
terms of its scattering parameters (defined with respect to
the same reference impedance at the two ports):

0
S =A[ Pl]
. p2 O

where p, and p, are two complex numbers. This represen-
tation suggests a very simple equivalent circuit model for
the matched twoport, shown in Fig. 5(b). This model em-
ploys an ideal fourport circulator and two oneports having
reflection coefficients equal to the reverse and forward
transmissions p; and p, of the matched twoport.

The unilateral gain U of the circuit model of Fig. 5(b)
can be found by substituting the [S] matrix elements from

@7n
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(27) into (10):

_ e —o]

U =
|1 - PikP2|

(28)
This is then also the U for the given twoport, since the
model differs from the original twoport only in respect of
a lossless reciprocal embedding which leaves the U un-
changed.

The matching network shown in Fig. 5(a) is, of course,
not unique; as a result neither are p, and p,. Consider now
the set of all bilaterally matched twoports that can be cre-
ated from the given twoport by embedding it in different
lossless, reciprocal fourport embedding networks. Since
the inverse of a lossless reciprocal transformation is also
a lossless reciprocal transformation, all twoports belong-
ing to the set can be viewed as lossless reciprocal trans-
formations of the matched twoport of Fig. 5(a), or that of
its equivalent circuit model shown in Fig. 5(b). This is
indicated in Fig. 5(c), which represents an arbitrary mem-
ber of the set. Since each member of the set is bilaterally
matched, it should also be possible to represent it by an
equivalent circuit model of the type shown in Fig. 5(b),
but with a different pair of reflection coefficients, say p}
and p;. Indeed, the oneports having reflection coefficients

o1 and p; can themselves be viewed as transformations of
the oneports having reflection coefficients p; and p,, as
shown in Fig. 5(d). Imposing the constraints of lossless-
ness and reciprocity on the embedding network of Fig.
5(c) leads to the conclusion that a single lossless twoport
can transform p; and p, into p{ and pj respectively. The
two twoports appearing in Fig. 5(d) are therefore identi-
cal.

We thus arrive at the crux of the argument. The circuit
of Fig. 5(d) is a model for the given twoport, embedded
as shown in Fig. 5(a), and a change in the embedding
network causes a change in only the lossless twoports N,
but not in p; and p,. Therefore, a function of the oneport
reflection coeflicients p; and p,, that is invariant to loss-
less embedding by N, is also an invariant of the given
twoport under the permissible class of embeddings. Such
an invariant function of p; and p, can be found by either
a geometrical or an algebraic technique; both of these are
described below in that order.

2) A Geometrical Interpretation: Prior to the advent
of computer-aided circuit analysis and design software,
impedance transformation and microwave circuit design
calculations were often carried out with the help of graph-
ical constructions, and many graphical aids, charts, and
procedures were developed for this purpose. Some of these
techniques are based on the use of concepts and results
from non-Euclidean geometry. An introduction to the
concepts of non-Euclidean geometry, and their applica-
tions in electrical engineering, will not be attempted here;
a tutorial exposition [12] and a survey of applications [13]
are available in the literature, and include citations to
many other references. The following discussion is lim-
ited to the one result from hyperbolic geometry that is
required for the present purposes.

Very briefly, a hyperbolic geometry is a non-Euclidean
geometry in which Euclid’s axiom of parallel lines is not
employed, and the sum of the angles of a triangle does
not equal 27 radians. As in any geometry, the distance
between two points can be defined with some self-con-
sistent metric, having the properties of additivity and a
zero. In the Poincaré model shown in Fig. 5(¢), the in-
terior of a circle serves as the two-dimensional hyperbolic
space, with the periphery (called the ‘‘absolute’’) being
infinitely far. The geodesics (which, analagous to Euclid-
ean ‘‘straight lines,’” are lines of shortest length between
any two points on the lines) are circles that approach the
absolute at right angles. The distance between two points
is measured along the geodesic, and can be algebraically
expressed as the logarithm of a ratio, as shown in Fig.
5(f). One of the basic results from this model is the in-
variance of the hyperbolic distance between two points.

The hyperbolic distance between two points can be
given a circuit interpretation [14]. Let the two points in
the complex plane be represented by complex numbers p,
and p,, and consider two oneport networks having the re-
flection coefficients equal to p; and p,. Further suppose
that a lossless twoport N is designed such that it trans-
forms the first oneport to a perfectly matched load, i.e.,
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the transformed reflection coefficient p; = 0. If the same
network N is used to transform the second oneport, its
reflection coefficient will become pj;. The voltage stand-
ing wave ratio (VSWR) of this transformed oneport does
not depend on the choice of N, and when expressed in
some logarithmic unit such as dB or nepers, is the hyper-
bolic distance between p, and p,. This is given by

11 = pfoa| + |01 — 02l
IL = plpal = lo1 = ool

In summary, if the complex numbers p; and p, repre-
sent reflection coeflicients of two oneport networks, the
hyperbolic distance 6(p,, p,) between them does not
change when both oneports are transformed through the
same lossless linear twoport. This basic result has been
applied, and rediscovered, in numerous applications. For
example, the figure of merit of two-state switching diodes
[11], that is'invariant to lossless transformations, is sim-
ply the hyperbolic distance between the impedances of the
diode in its two states.

This result can now be applied to the circuit model of
Fig. 5(d). Although pj and pj in this model are not unique,
the hyperbolic distance between them is. Moreover, since
the distance 6(p,, p;) is invariant to N, so is any function
of §; in particular:

0(p1, p2) = In 29)

|Pl —Pz|
11 _PikP2|

is independent of the matching network of Fig. 5(a). This
is the same as the unilateral gain of (28). Thus U may be
interpreted as a function of the hyperbolic distance be-
tween the forward and reverse transmissions of the bilat-
erally-matched twoport.

3) An Algebraic Interpretation: An algebraic interpre-
tation is closely related to the above. The reflection coef-
ficient p of a linear oneport, when viewed through an
embedding linear twoport, undergoes a transformation of
the form

tanh (8 /2) = (30)

_ap +b
cp +d

’

€2Y)

where a, b, ¢, and d are four complex numbers, and are
characteristics of the embedding twoport. If the trans-
forming twoport is constrained to be lossless, the four

complex numbers are also constrained, and the most gen-

eral form that this transformation can take is as follows:

, _ SXp (jayp + A exp (jB)
Aexp [jla = Blp + 1

where A, o and B are all real constants. The reflection
coefficients pj and p; in Fig. 5(d) can therefore be ex-
pressed in terms of p; and p,, and when these are substi-
tuted for p, and p, in the expression for unilateral gain
given in (28), the value of U is found to remain un-
changed.

A more general interpretation of U along the above lines
is possible. A bilinear Mébius transformation [15] is a

(32)
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mapping that takes a given complex number Z into an-
other complex number W (the ‘‘image of Z°’) given by

_aZ+b

cZ+d

(33)

where a, b, ¢ and d are complex constants. This is a com-
monly occurring transformation in the theory of linear
networks, and the relationship. between many pairs of
quantities of interest takes this form, e.g., an impedance
and the corresponding reflection coefficient, or the input
impedance and the load impedance of a linear twoport.
Supplemented by the convention that W = a/c for Z =
o, and W = o for Z = —d/c¢; this transformation is both
a conformal and a topological mapping of the extended
plane onto itself, the topology being defined by distances
on the Riemann sphere. Such a mapping is uniquely de-
fined by specifying three distinct points in the Z plane,
and their corresponding images in W plane (i.e., there is
one and only one transformation for which this would be
true).

The bilinear transformation has a number of remarkable
geometrical properties, one of which is the invariance of
the so-called ‘‘cross-ratio.”” The cross-ratio of four com-
plex numbers Z,, Z,, Z;, and Z, is the image of Z; under
a linear transformation which carries Z,, Z;, and Z, into
1, 0, and oo (provided that Z,, Z;, and Z, are distinct from
each other). It is given by

Zy - Z3) /(2 — Zy)
2, — 2/ (2, — Zy)

The cross-ratio has some interesting properties; for ex-
ample, it is real if, and only if, the four numbers Z,, Z,,
Z,, and Z, lie on a circle. The one property of the cross-
ratio relevant to the present discussion is its invariance
under a bilinear transformation: if W, W,, W;, and W,
are the images of Z,, Z,, Z;, and Z, under the transfor-
mation in (33), then

G -Z)ZG —Z) _ (W = W)W, — W)
Zy - Z)2Z, —Zy) (W — W(W, = W3)

The hyperbolic distance defined in Fig. 5(f) is in fact
based on a cross-ratio.

An embedding network can be viewed as a bilinear
transformation [16], and Mason’s U as a special case of
the cross-ratio. A proof of this statement, presented in a
more general setting, is contained in Section V-A below.

CZi, 2y, Zs, Zs) = (34)

35)

IV. APPLICATIONS OF MASON’s INVARIANT U

The results of Mason’s paper have been employed in
numerous ways since their publication. The first applica-
tion, which originally motivated the work, was to the bi-
polar junction transistor, an active device then in its in-
fancy. When biased in its active region, and operated
under small-signal conditions, this device could be rep-
resented by a linear twoport, so that a bias and frequency
dependent U could be defined for it. Several authors de-
termined the unilateral power gain of the early germanium
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transistors as a function of frequency, discussed the effect
of various transistor equivalent circuit elements on the
value of U, and thus deduced the limitations on the range
of frequencies over which the transistors could be em-
ployed as active devices [17], [18]. Some of these appli-
cations are described in this Section.

A. U as a Figure of Merit

Prior to Mason’s discovery of the invariant U, and for
sometime thereafter until the importance of U was widely
recognized, there was general uncertainty about the choice
of a measure of device performance that should be used
to describe the capability of a device in delivering power
at high frequencies. As an example of this uncertainty, in
the early work on bipolar junction transistors, a number
of different types of power gains were used to evaluate
the high-frequency performance of the device, including
maximum available power gain [19], and the maximum
attainable power gain when the source impedance is con-
strained to be purely resistive [18]. When used as a device
figure of merit, these parameters have a number of limi-
tations; e.g., they are influenced by conditions external
to the device, and they depend on the manner in which
the transistor is connected in the circuit (e.g., common-
base versus common-emitter). The invariant U provided
the device designers with a fundamental criterion for
judging the goodness of a device. Moreover, since a com-
mon-emitter connection can be transformed into a com-
mon-base connection simply by embedding the former
within a lossless reciprocal network composed of wires,
U is invariant with respect to the method of connection,
and serves as a more useful measure of device perfor-
mance. An alternative proof of the invariance of U to the
choice of input and output terminals may be given in terms
of the indefinite admittance matrix [20].

Perhaps the most convincing evidence of the utility of
the concept of a unilateral power gain as a device figure
of merit is the fact that for the last three decades practi-
cally every new active twoport device developed for high-
frequency use (and some passive ones as well [21], [22])
have been carefully scrutinized for the achievable value
of U, the frequency dependence of U, the influence of
device parameters on U, and the design techniques for
enhancing the device U. Published accounts of these ef-
forts include the analysis of:

1) Bipolar junction transistors by Statz, er al. [17];

2) Transit-time transistors by Zuleeg and Vodicka [23];

3) Junction FET’s by Das and Schmidt [24];

4) Silicon MOSFET’s by Burns [25];

5) Dual-gate MOSFET’s by Burns [25];

6) GaAs MOSFET’s by Mimura, et al. [26];

7) Microwave Silicon MESFET’s by Baechtold and
Wolf [27];

8) GaAs MESFET’s by Bechtel, et al. [28];

9) HEMT’s by Vickes [29]; and

10) Hetero-junction Bipolar transistors by Prasad, et al.

[30].

Since the U was recognized as an important figure of
merit of the device, its measurement was necessary for
comparing the transistors, and for measuring the progress
in their design. Accurate methods for the measurement of
U were therefore developed, and the measurements were
employed in the characterization of the transistors [31].
There are two different ways of determining the uni-
lateral power gain of a given device at a specified fre-
quency: one is by a direct experimental measurement in
which a device is unilateralized and its power gain is ex-~
perimentally maximized, and the other is by computation
from the measured network parameters of the device. The
former method is now obsolete, and the measurement of
U for high-frequency devices is now almost invariably
carried out with the help of an automatic network ana-
lyzer. The measured scattering parameters of the transis-
tor can be used to determine the U in two different ways:
either by a direct substitution of the network parameters
in the expression for U given in (10), or by first fitting the
measured parameters to a device equivalent circuit, from
which U can be calculated in terms of the fitted values of
the circuit elements appearing in the equivalent circuit.
The agreement between the two possible estimates of U
depends on the degree of fit (i.e., on the accuracy of the
measured data, and the validity of the equivalent circuit).

Despite the fact that U is a more fundamental and ele-
gant measure of active device capability, it is not used as
widely in the electron device community as some of the
other figures of merit, particularly the maximum available
gain G, (e.g., [32]). There are several reasons for this:

(a) For many devices and conditions, the values of U
and Gy, are not far from each other [33]. This small
difference is especially unimportant when the gain
is large.

(b) All power gains are equally easy to calculate from
the immittance or scattering parameters. But when
they are determined directly from an equivalent-
circuit model of the device, U is less obvious due
to the need to unilateralize the model.

(¢) In some cases, U is not the most convenient or
practical parameter. For example, if the twoport
under consideration is a frequency converter, the
unilateralizing circuit must also be a frequency
converter so that the feedback is compatible. Such
a feedback circuit is easier to use in thought exper-
iments [34] than in laboratory experiments.

B. U as an Indicator of Activity

A related application of the idea of U has been in clar-
ifying the conceptual problems. The direct relationship of
U to activity helps identify a passive network, or con-
strain the kind of performance expected from it. One ex-
ample of the kind of misunderstanding that can be cleared
through the use of U is given in [8], where Singhakowinta
and Boothroyd [8] showed how to avoid a misunderstand-
ing caused by earlier authors who had treated an unreal-
izable feedback network as passive.
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C. Definition of frax

An evaluation of the relative power gain capability of
two active devices requires, in general, a comparison of
their U values over the entire frequency range of interest,
since the unilateral power gain U is a function of fre-
quency. (Only if the nature of the frequency dependence
of U( f) is known in advance, or is restricted, for example
by confining the consideration to a single type of active

devices, it may be sufficient to compare devices on the’

basis of their U values at just one frequency.) Clearly, it
would be convenient and desirable to have a single-num-
ber measure of the quality of active devices. Such a sim-
ple, and highly practical, figure of merit can be derived
from the unilateral gain U( f), and is called the maximum
oscillation frequency f,.,; it is defined as the frequency at
which U becomes unity, i.e.,

U(f)|f=fmax = 1

If the unilateral power gain is a monotonic function of
frequency, as is usually the case, f,,, is a well-defined,
single-valued parameter. It is commonly used as a mea-
sure of the high-frequency capabilities of an active de-
vice. Its significance follows from the property of U ex-
pressed in (21) (that U exceeds unity for an active device).
The maximum frequency of oscillations is therefore also
the maximum frequency of activity.

The concept of a highest frequency above which power
gain cannot be obtained from an active device, that had
long been known from practical experience, thus became
established on firm -theoretical grounds with Mason’s
work, and was discussed in the literature immediately
thereafter [17]. The first explicit mention of the f,,,, in the
literature appears to be due to P. R. Drouilhet [35], who
defined it, deduced an expression for it, and measured it
for transistors.

The value of f,,, also serves as a benchmark, indicating
the level of development of active device technology.
Thus, the state-of-the-art values of f,,, were of the order
of 10° in the 1950s, of the order of 10" in the 1970’s,
and are of the order of 10! in the nineties.

In principle, there are three different methods of mea-
suring the f,,, for a given two-port active device. The
most direct, and conceptually the simplest, is the one in
which the device is embedded in an oscillator circuit, with
the input and output circuits incorporating a tuner (a low-
loss two-port with variable impedance matrix), and at-
tempts are then made to produce oscillations in the circuit
at as high a frequency as possible. The accuracy of this
manual method is dependent on the losses in the tuners,
and the sensitivity with which the presence of a oscilla-
tions can be detected against the background noise. A
more modern and efficient method of f,,, measurement is
through the use of an automatic network analyzer, which
typically yields S parameters of the two-port; then the
unilateral power gain can be calculated as function of fre-
quency from the measured S parameters by (10), and the
frequency at which it drops to unity can thus be found.

(36)

Another commonly used method utilizes the measured S
parameter data to deduce the values of the circuit ele-
ments in an equivalent circuit of the device by a numerical
best-fit; the maximum available gain of the device is then
calculated from the equivalent circuit, and the frequency
at which it drops to unity can be calculated in terms of the
equivalent circuit elements. If the equivalent circuit is
physically based, this method allows extrapolation of the
results to higher frequency; the need for this is explained
below. If the measurement and circuit modeling errors are
small, the results obtained by the various methods can be
in good agreement, as demonstrated for MESFET’s [27]
and HBT’s [36].

An accurate measurement of U as a function frequency,
in the neighborhood of the high frequencies where it is
unity, has always been difficult for state-of-the-art de-
vices. (The f,x for modern transistors lies in the mm-
wave and sub-mm wave range, where there are no accu-
rate automatic network analyzers; and even in the earlier
decades, when the f,,, values were lower, so were the
capabilities of the contemporary instrumentation.) As a
result, the reported values of f,,, for transistors are often
based on the measurement of U as a function of frequency
over a range of frequencies (typically, well below f.,),
and then an extrapolation of the U to higher frequencies.
The extrapolation implies an a priori knowledge of the
nature of frequency variation.of U, usually based on the
physical reasoning or a known equivalent circuit for the
device [37]. .
~ Interestingly, the frequency at which U attains the value
of 1 is also the frequency at which the maximum stable
gain G, and the maximum available gain G,,, of the de-
vice also become unity. As a result, alternative interpre-
tations can be given to the quantity f,,,.. More important,
it is not necessary to measure U( f) in order to determine
Jfnax; one of the other gains can be used if it is easier to
measure (and more reliably extrapolate). Many of the ear-
lier papers on this subject [33], [38], [39] either state, or
imply through graphical plots, that the frequency at which
U becomes unity is higher than the ones at which G or
G,,, become unity. This notion is incorrect, and a formal
proof of their equality has been published [40].

Several different cutoff frequencies of active devices
(and in particular transistors) have been discussed in the
literature. In addition to f;,,, these include the lowest (or
dominat) pole frequency ih the device transfer function;
the low-pass cutoff frequency of an R-C network at the
input or the output port of the device; a cutoff frequency
due to phase delay (e.g., caused by the carrier transit-time
in the device); the unity short-circuit current gain fre-
quency fr [41]; and the highest natural frequency of a net-
work with multiplicity of active devices. The f;,,, is a fun-
damental characteristic of the device, and has the physical
significance that it is the maximum frequency of oscilla-
tion in a circuit in which the following three conditions
are met: (i) there is only one active device present in the
circuit, (ii) the device is embedded in a passive network,
and (iii) only single sinusoidal signals are of interest.
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If these conditions are not met, a device may be made
to produce oscillations at frequencies higher than f,,,, and
it is possible to define other cutoff frequencies that are
variants of f,,,. For example, in integrated circuits, it is
commonplace to have multiple active devices, or equiv-
alently, an active device embedded in an active network.
In such circuits, a more useful measure of the high-fre-
quency capability of the device may be the power transfer
cutoff frequency fpy [42], which is the frequency of unity
power gain with no unilateralization and with a load con-
sisting of another identical device. Still another cutoff fre-
quency suitable in integrated circuits is the maximum fre-
quency of oscillation achievable in a circuit in which
multiple identical copies of the device are permitted. Such
a generalization of f,;, has been discussed in the literature
[43].

V. GENERALIZATIONS OF U: OTHER NETWORK
INVARIANTS

Invariant properties of networks are interesting and im-
portant because an invariant parameter that is a charac-
teristic of the network can be put to many uses. One pos-
sible use of an invariant parameter is as a figure of merit
of the network, that can serve as a basis for comparing
different networks, for quantifying the change in a net-
work caused by some design modification, and for mea-
suring the progress towards a design goal. A second po-
tential use of an invariant parameter is as a reference or a
benchmark value that can be used to check the accuracy
of a computation, modeling, or measurement of the net-
work characteristic, by verifying whether the value of the
parameter has remained unchanged. A third use of in-
variants is in identifying the limitations to the perfor-
mance of a network, establishing the bounds on attainable
characteristics, and determining the feasibility of some
design goal. As a result of their utility, many different
invariant properties of networks have been discovered
over the years.

All known invariant parameters of networks can be
classified into two groups based on the manner in which
they are deduced [44]. One group, called ‘‘quasi-power
invariants,’’ consists of quantities that have the dimen-
sions of power, or are functions thereof. Such invariants
can be deduced from Tellegen’s theorem, or from a more
general matrix constraint expressing the linear time-in-
variance of the embedding network.

The second group of invariants consists of dimension-
less quantities that follow from the cross-ratio invariance
property [16] of bilinear transformations, or from its ma-
trix generalization [44]. Mason’s U is only one, and the
earliest discovered, of the dimensionless invariants of the
cross-ratio type. Other invariants of this type can be
viewed as generalizations of Mason’s invariant U, and are
introduced here briefly.

Mason’s method of search for the invariant property of
the twoport not only proves that U is an invariant, but also
simultaneously establishes that it is the only invariant

meeting the stated specifications. Therefore, the search
for still other network invariants is futile unless the spec-
ifications of the problem are changed. One way of chang-
ing the problem specification is by relaxing one or more
of the constraints imposed on the device and the embed-
ding network in Mason’s work. Mason’s statement of the
problem of network invariant search, given in Section
I1I-B, contains the following constraints:

(a) that the device has exactly two ports;

(b) that the network parameters of the device are con-
stant (i.e., the device is time-invariant);

(c) that the embedding network is necessarily lossless
and reciprocal; and

(d) that the embedding network has four ports (i.e., the
number of ports of the device remains unchanged
upon embedding).

Network invariants can be found without some (or all)
of these constraints, and the resulting invariants can be
viewed as generalizations of Mason’s U. Interestingly
enough, some of these invariants had already been dis-
covered independently, and out of necessity in some ap-
plications, before a more systematic search for them was
undertaken [45]. A number of these invariants, such as
those for characterizing the switching devices and the
high-Q varactors, find applications in microwave engi-
neering. The possibility of still other extensions and
variations of Mason’s invariant problem, based on net-
work parameters other than impedance matrices, or
broadband constraints, or nonlinear networks, or transfer
rather than driving point functions, have also been briefly
discussed in the literature [45], [46].

A. Generalization to n-Ports

In the problem of Section II-B, if the device under con-
sideration is taken to be an n-port, and the linear lossless
reciprocal embedding network is simultaneously allowed
to be a 2n-port, an invariant generalized power gain can
be deduced.

As a generalization of the cross-ratio of four complex
numbers, given in (34), one can define a cross-ratio of
four n X n 'matrices Z,, Z,, Z5, and Z,, which is another
n X n matrix given by

R =1[Z, - Z,]I1Z, - Za]_l[[z4 - L1Z, — Z3]—1]_1-
37

- The four given matrices can be thought of as the open-

circuit impedance matrices of four different n-port linear
networks. Consider now a 2r-port linear embedding net-
work, that transforms each of the four conceptualized n-
ports into another n-port, having open-circuit impedance
matrices Zi, Zj, Z3, and Z}; the cross-ratio of the trans-

formed matrices is then found to be
R' = HRH (38)

where H is an n X n matrix whose elements obviously
depend on the embedding network. Such a transformation
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of R to R’ is called a similarity transformation, and it
leaves some of the characteristics (such as the eigenval-
ues) of the cross-ratio matrix R unchanged. One of the
unchanged characteristics is the value of the determinant
of R; i.e.,

det [Z, — Z,]/det [Z, — Zs]
det [Z4 - Z2] /det [Z4 - Z3]

(39)

regardless of the transforming matrix H (and hence the
embedding network).

This invariance property in (39) can be employed to
develop many network invariants (that are invariant to the
transformation through the 2n-port embedding network)
by appropriate choice of the four given impedance mat-
rices. For instance, if only one n-port, having an imped-
ance matrix Z, is of interest, the four required impedance
matrices Z,, Z,, Z;, and Z, can be takento be Z, Z,, —Z*,
and —Z, respectively. With these four impedances, the
invariant in (39) becomes

|det [Z — Z,])*
(det [Z + Z*])*"

This quantity is an invariant of the given n-port. When
applied to the special case of a two-port, it reduces to the
square of Mason’s U function given in (7). Since the four
selected impedance matrices can be generated from the
given Z by the successive application of two transforma-
tions Z = Z, and Z = —Z*, and these two transforma-
tions commute with the 2n-port embedding provided the
embedding is lossless and reciprocal, not only the numer-
ical value of the det [R] but also its functional form are
preserved under the transformation by such an embedding
network.

If the four impedances were selected in a different or-
der, as Z, Z,, —Z}, and —Z*, the invariant determinant
becomes

det [R'] = det [R] =

det [R] = (40)

det [Z = Z]*
(det [Z + Z}))*
This invariant has also been derived earlier by other meth-

ods [45]. Still other invariants can be found by other
choices of the four impedance matrices.

Gy

B. Generalization to Time-Varying Networks

It has been assumed throughout the above discussion
that the properties of the device are time-invariant. In en-
gineering practice, there are numerous instances in which
a device is expected to perform as a linear network, but
with different parameter values at different times. Exam-
ples of such devices are electronic switches, control cir-
cuits, and parametric devices. In each case, the network
parameters of the device are made to vary in a controlled
manner (or in response to a control signal), either between
two or more distinct values (as in a switch), or continu-
ously with time (as in a parametric device). Many in-
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variants of such networks can be found in a manner that-
is a generalization of Mason’s method, and some of them
have a useful physical or practical significance.

Perhaps the simplest example of such an invariant is the
figure of merit of a switching diode and has been men-
tioned in Section III-D. If the device under consideration
is a linear oneport, and is capable of existing in two dif-
ferent states having impedances Z, = R, + j - X, and Z,
= R, + j * X,, the figure of merit is defined as

_ |Z, — 7))
¢ 2VRe [Z] Re [Z)]

It is a measure of the separation between the impedance
values of the diode in the two states, and serve as a mea-
sure of the usefulness of the diode as a switching element
[47].

The procedure for deducing the invariants is a direct
application of the general procedure described in Section
V-A, along with an appropriate choice for the four imped-
ance matrices needed to form the cross-ratio of (37). As
the simplest case, consider an n-port linear network that
can exist in two discrete states, and has the open-circuit
impedance matrices Z; and Z, in the two states. One pos-
sible method of generating the four required matrices is
through the use of a transformation, such as Z — —2Z*.
Then the four matrices are Z;, Z,, —Z¥, and —ZF re-
spectively, and the invariant determinant becomes

|det [Z, — Z)]|?
det [Z, + Z;“] - det [Z, + Z;“]'

This invariant, specialized to the case of a scalar imped-
ance Z (i.e., a 2-state, one-port linear device) is identical
with Kurokawa’s ‘‘quality factor for switching diodes.”’
Once again, other invariants can be found by alternative
choices of the four impedance matrices. For instance, a
mere reordering of the four matrices as [Z;], [Z,], [—Z5]
and [—Z}] results in the invariant

det [Z, — Z,]
det [Z, + Z¥]°

Alternatively, if the matrices Z; and Z, are generated
through the transformation Z - —Z;* applied to the given
matrices Z, and Z, respectively, the resulting invariant in
(39) would be

(42)

43)

(44)

det [Z, — Z,]

. 45
det [Z, + ZF) 43)

Both of these invariants, in (44) and (45), when applied
to one-ports, encompass Kawakami’s invariant [48].
Generalization of the above method to 3-state and
4-state networks is straightforward by using the corre-
sponding impedance matrices. An extension to p-state
network for p > 4 is also possible, by defining cross-ratio
matrices R for four matrices at a time, and then forming
a chain of R matrices [45]. This would yield » invariants
of the p-state n-port network. Finally, if the impedance
matrix of the n-port is a continuous function of some pa-
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- rameter, the set of discrete states can be conceptually re-
placed by a continuum.

C. Generalization to Other Embeddings

It is not necessary that the number of ports of the device
remain unchanged when it is embedded; i.e., the embed-
ding network for an n-port device need not have exactly
2n ports. If the embedding has a larger number of ports,
the given n-port device can be conceptually enlarged by
adding disjointed ports with short-circuits at those ports.
When the embedding has fewer than 2n ports, the reduc-
tion in the number of ports causes the invariants to be
replaced by constraints, expressed as inequalities among
the moduli of eigenvalues of some matrices related to the
cross-ratio. Some details of this approach can be found in
the literature [45].

BroGraPHICAL NOTE
SAMUEL J. Mason (1921-1974)

Samuel J. Mason was born in New York City, and
graduated from Rutgers University in 1942, received a
Master’s degree in 1947, and a Doctorate in 1954, both
from MIT. In 1942, he joined MIT Radiation Laboratory,
which after the second World War became the MIT Re-
search Laboratory of Electronics, and he became the As-
sociate Director of the Laboratory in 1967, a position he
held until the time of his death in 1974. He was also a
faculty member in Electrical Engineering, becoming an
Assistant Professor in 1949, an Associate Professor in
1954, a Professor in 1959, and the Cecil H. Green Pro-
fessor in 1972. He was a Fellow of the IEEE. His work
in circuits and systems led to his major involvement in
curriculum revision at MIT in the late 1950’s, and he au-
thored three textbooks on related subjects. During the later
part of his career, his research interests turned to optical
character recognition. Some of his best known contribu-
tions are in the areas of signal flow graph analysis (Ma-
son’s rule) and device invariant (Mason’s Unilateral gain).
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