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Editor’s Note

This paper is the first in what we hope will become a series. “Classics Revisited” will

appear periodically in the TRANSACTIONS; these papers will reevaluate the substance and im-

portance of recognized classics, in terms of their impact on modem microwave technology.

We expect that the tutorial value of these papers, and their documentation of the creative

process in our technology, will make them very valuable to our readership.

This series was proposed by Dr. Gupta, so it is appropriate that he present the first paper.

Others interested in preparing a paper in this series should contact the MTT editor or Dr.

Gupta. Because such papers are part historical and part technical, only papers that exhibit a

high degree of both technical and scholarly value will be accepted.
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Abstract–This paper is a tutorial review of a classic paper of

the same title authored by Samuel J. Mason, and published in

1954. That paper was the first to define a unilateral power gain

for a linear two-port, and to prove that this gain is invariant

with respect to linear lossless reciprocal four-port embedding,

thereby making it useful as a figure of merit intrinsic to the

device. The significance of the paper stems from the fact that

(a) it introduced a new fundamental parameter that is now used

to evaluate all three-terminal active devices, (b) it initiated work

on a new line of inquiry, which has led to the discovery of many

other invariants that describe the essential constraints on the

behavior of networks, and (c) its results form the foundation

for many of the basic ideas currently in use, including those of ‘

the cutoff frequency of transistors, activity of devices, stability

of amplifiers, and device invariants. The present article brings

that original paper up-to-date, presents a tutorial exposition of

its contents in a modern form, and points out its significance

and applications in microwave engineering. The subsequent

advances in the subject area of the paper are also summarized

so that the original paper can be placed within a broader con-

text, and understood with a more general perspective.

I. INTRODUCTION

T HIS PAPER is a tutorial review of a classic paper,

having the title “Power Gain in Feedback Ampli-

fiers, ” authored by Samuel J. Mason, and published in
1954 [1]. In that paper, Mason defined a unilateral power
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gain for a linear twoport, and discussed some of its prop-

erties. The unilateral power gain U is the maximum power

gain that can be obtained from the twoport, after it has

been made unilateral with the help of a lossless and recip-

rocal embedding network (which provides the required

feedback). Among the many interesting properties of U

related to the frequency characteristics, activity, and sta-

bility of the twoport, perhaps the most important is the

result due to Mason that U is invariant to a class of trans-

formations (linear Iossless reciprocal embedding), and is

therefore a characteristic inherent to the device. Conse-

quently, U is useful as a figure of merit of the device,
both by itself, and through other quantities that can be

deduced from it. The title of Mason’s paper does not fully

indicate its contents and applicability.

Although Mason’s paper originally appeared in a jour-

nal devoted to circuit theory, its results have been of most

interest to the microwave device community. This is be-

cause in practice the value of the device power gain U

becomes unimportant when U is either smaller than, or

much larger than, unity; U > 1 happens to occur in the

microwave frequency range for most state-of-the-art ac-

tive devices of the last three decades.

The present paper is intended to be an exposition of

both the subject matter of Mason’s paper, as well as its

applications and generalizations that have appeared in the

subsequent work in this field. There are three parts to this

paper. The first part is a tutorial explanation of the con-

tents of Mason’s paper, explaining the problem posed by
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Mason, his line of reasoning, and the results obtained.

The second part of this paper points out the significance

and utility of Mason’s paper, in light of its later applica-

tions. The third part of this paper summarizes the ad-

vances in the search for network invariants that have been

made since the appearance of Mason’s paper; these ad-

vances constitute the framework within which Mason’s

results can be understood with a more general perspec-

tive.

11. MASON’S INVARIANT U

At the time of Mason’s work in 1953, transistors were

only five years old; were fabricated in germanium with

alloyed junctions [2]; were the only successful solid-state

three-terminal active device; were beginning to be devel-

oped for RF applications; and were limited to frequencies

in and below the VHF range. According to the introduc-

tion in his paper [1], Mason was motivated by the desire

to discover a figure of merit for the transistor. This search

led him to identify the unilateral power gain of a linear

twoport as an invariant figure of merit of a linear twoport.

A. Mason’s Objective and Approach

As Mason’s paper deduced a maximum invariant power

gain, one might expect the starting point of the paper to

be an expression for the power gain of a linear twoport,

which is then maximized and proved to be invariant. (Such

an approach can be found in some textbook treatments of

the subject [3].) Instead, Mason begins the paper with a

search for any arbitrary invariant network property that

might happen to exist, and once it is found, identifies it

as a power gain. His approach therefore not only finds the

invariant power gain, but also demonstrates that the uni-

lateral power gain is both inevitable and the only device

characteristic that is invariant under a specified class of

transformations.

Since the figure of merit of a device should be an in-

herent characteristic of the device, and not merely an ar-

tifact of its environment, it must be invariant with respect

to some types of changes in the environment. Accord-

ingly, Mason’s stated goal in the paper is to look for a

property of the linear twoport that is invariant with respect

to a specified class of transformations. A complete state-

ment of this problem should include both the specification

of the device and its environment, as well as the types of

changes in the environment of the device (the ‘ ‘transfor-

mations”) under which the desired figure of merit is to

remain invariant. Mason’s paper therefore proceeds along

the following major steps:

(a)

(b)

It stipulates the manner in which the device will be

connected to its environment, and describes its be-

havior in terms of its twoport network parameters

at a single frequency.

It represents a change in the device environment as

an embedding network and defines the permissible

changes through some constraints imposed on the

embedding network.

(c)

(d)

(e)
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It demonstrates that the permissible transforma-

tions can be made up from a set of just three ele-

mentary transformation.

It then deduces the form that a network property

must have in order for it to be an invariant with

respect to each of the three elementary transfor-

mations.

The resulting form is then found to be a power gain,

applicable when the device has been embedded in

a network that makes the embedded device unilat-

eral.

B. Problem Definition

The object whose properties are under study .is a linear

twoport network, and will be called a “device” hereafter,

in anticipation of the fact that the results will subse-

quently be applied to transistors and to other active de-

vices. The device under consideration is constrained by

three requirements:

(a)

(b)

(c)

It has only two ports (at which electrical power can

be transferred between the device and the remain-

der of the universe).

It is linear (in the relationships that it imposes be-

tween the electrical currents and voltages at the two

ports) .

It is used in a specified manner (connected as an

amplifier between a linear one-port source network

and a linear one~port load) as shown in Fig. 1(a).

Since it is otherwise unrestricted, the device can be active

or passive, lossy or lossless, reciprocal or non-reciprocal,

symmetric or asymmetric, and spatially distributed or

lumped.

Although the search for an invariant property of the de-

vice can be carried out in terms of any type of network

parameters (such as the scattering parameters or immit-

tance parameters), the impedance parameters will be used

here, so as to retain the flavor of the original line of rea-

soning used by Mason. Let the open-circuit impedance

matrix of the device be represented by Z.

Any transformation of the device environment can be

conceptualized as an embedding network, as shown in

Fig. l(b), through which the two ports of the device are

accessed. The permissible class of transformations can be

defined in terms of constraints imposed on the embedding

network. Mason defined the problem as being the search

for device properties that are invariant with respect to

transformations as represented by an embedding network

satisfying the four constraints that it be (a) a four-port,

(b) linear, (c) lossless, and (d) reciprocal.

C. Problem Solution

Mason next demonstrated that all permissible transfor-

mations that satisfy the above constraints can be synthe-

sized from just three elementary transformations that are

carried out sequentially; this is equivalent to representing

any permissible embedding network by a set of three
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Fig. 1. The given linear twoport device. (a) Connected as an amplifier
between the linear one-port source and load networks. (b) Embedded within

a linear Iossless reciprocal four-port. (c) Matched to the source and load
through linear lossless reciprocal tuners.

embedding networks nested within each other. The ele-

mentary transformation are called reactance padding, real

transformation, and inversion. In circuit terms, the three

transformations can be described by the lossless embed-

ding networks shown in Fig. 2. Mathematically, they can

be defined by expressing the Z’ matrix of the transformed

device in terms of the Z matrix of the device prior to the

transformation:

(a) Reactance Padding: .

where all XV are real.

(b) Real Transformations:

where all no are real.

(c) Inversion:

The embedding networks shown in Fig, 2 are only illus-

trative and not unique; the above transformations can also

be achieved by other embedding networks.

Mason’s search for an invariant property of the device

proceeds by inquiring as to the nature of the quantities

1; I

+ +
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Fig. 2. The three elementa~ transformations that can synthesize an arbi-

trary linear Iossless reciprocal four-port embedding.

that remain invariant

transformations:

(1)

(2)

(3)

The reactance

under each of the three elementary

padding transformation leaves the

following two matrices unchanged

[Z – Z,] and [Z + Z*] (4)

where t denotes matrix transposition, and * denotes

the complex conjugate. Indeed, all quantities left

unchanged by this transformation are either the ele-

ments of these two matrices, or are functions

thereof. Consequently, any property of the device

that is invariant under the reactance padding trans-

formation must be a function of only these two

matrices.

The real transformation leaves unchanged the de-

terminant of the ,matrix

[z – 2,][2 + 2“]-1. (5)

In fact, this determinant is the only function of the

two matrices in (4) that has this property. As a re-

sult, the ratio of determinants

det [Z – Z,]

det [Z + Z*]
(6)

is invariant under both reactance padding and real

transformations.

Finally, the inversion transformation leaves the

magnitudes of the two determinants in the above

ratio, and the sign of the one in the denominator,

unchanged. Hence the quantity invariant under all
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three elementary transformations is

~ = Idet [Z - 2,]1

det [Z + Z*]

12,, -2’,12
= 4 (Re [Zll] “ Re [222] – Re [212] o Re [221])”

(7)

The quantity U discovered in this manner is the desired

invariant property of the device, and the principal result

of Mason’s paper.

D. Alternative Expressions for the Invariant

The form of U remains unchanged when it is expressed

in terms of the admittance parameters of the two-port:

u=
I Y’, - Y,’1’

4 (Re [Yll] o Re [Y22] – Re [Y12] s Re [Y21])”

(8)

An expression for U in terms of the scattering parameter

matiix S can be found [4] by substituting for the Z matrix

the identity

z“= (1 + S)(l – S)-l (9)

where 1 is a unit matrix. With this substitution,

u= Is,, -$112
det [1 – SS*] “

(lo)

Still another useful form of the expression for U is in terms

of the stability factor k, defined as

k = 1 – ls~~l’ – 1s”12+’ls~~s” – s’~s~’l’ ~11)
21s~’s’~1.

~Since the stability of an active twoport is of prime impo~-

tance, its k may already be known or determined; then U

can be conveniently found from

u= 1(~21 /&2) -112

2k I S21/S121 – 2 Re [Szl /S12]”
(12)

III. THE SIGNIFICANCE OF MASON’S INVARIANT U

Having established that the quantity U in (7) is an in-

variant, following Mason, we next turn to identifying its

physical significance. A physical meaning can be ascribed

to U in a number of different ways: as a power gain max-

imum, as a measure of device activity, and as an invariant

under a class of bilinear Mobius transformations. Each of

these interpretations of U is examined below in detail.

A. U as a Gain Maximum

One interpretation of U is as a maximum of a power

gain of the linear twoport device under some specific re-

strictive conditions. Consider the device embedded in a

fourport network, as shown in Fig. 1(b), and used as an

amplifier between a linear source network having a source

impedance Z~ and a linear load network having an imped-

ance Z~. Then, U is the maximum achievable value of the

power gain of this amplifier, provided:

1)

2)

3)

4)

The embedding network is a linear lossless recip-

rocal fourport,

The embedded device (i.e., the composite of the

given device and the embedding network) is uni-

literalized.

There is no other connection between the source and

the load networks, except through the unilateralized

device.

The source and load impedances Z, and Z~ are pas-

sive, and are the variables with respect to which the

gain is maximized.

In order to comprehend this interpretation of U, and the

import of the restrictive conditions imposed in gain max-

imization, it is necessary to understand the concept of

unilateralization first. This is discussed next.

1) Unilateralization: What is unilateralization? Uni-

lateralization of a given linear twoport is the process of

embedding the given device within an embedding net-

work as shown in Fig. 1(b), such that the embedded de-

vice has no reverse transmission of signals, from the out-

put port to the input port, i.e.,

z;’ = o (13)

where Z’ is the open-circuit impedance matrix of the

transformed device (i.e., the composite of the device and

the embedding network), defined at the external ports of

the embedding network.

How can unilateralization be carried out? A given de-

vice can be unilateralized in numerous ways, and the

embedding network needed to unilateralize it is not

unique. A number of different practical methods of uni-

lateralization are discussed by Cheng [5], along with ex-

amples and uses’ of unilateralization for both electron tubes

and transistors. For the sake of conceptual understanding,

one possible method of unilateralization is shown in Fig.

3. In this method, the embedding network consists of just

a reactance and an ideal transformer. As a result of its

simplicity, the manner in which the unilateral nature of

the transformed device comes about can be easily under-

stood in this scheme. The added reactance at the output

port brings about a phase change in the output voltage

such that it is in phase (or exactly out of phase) with the

input voltage when 11 = O. The turns ratio (and the po-

larity) of the transformer in the feedback path is then ad-

justed so that it introduces a voltage at the input port to

cancel that due to the reverse transfer through, the non-

unilateral device. Mathematically, the reverse transfer

impedance of the embedded device of Fig. 3 can be found

as

42 = 212 – n(~2 + j.x2). (14)

This can be made to vanish by selecting Xz so as to equate

the angles of the two complex terms on tlhe right hand

side, and then selecting n to make their magnitudes equal.
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Fig. 3. One possible method of unilateralizing a given linear twoport by a
linear lossless reciprocal four-port embedding.

Why is unilateralization worthy of attention? Unilater-

alization of a given linear twoport is useful both in prac-

tice and in concept. Amplifier designers often add feed-

back elements (i.e., an embedding network) to an active

device so as to prevent a reverse traveling wave in a cas-

cade of twoports, and so as to allow tuning or impedance

matching to be carried out at the output port of the twoport

without influencing the tuning or matching at the input

port. Conceptually, unilateralization allows the twoport

performance to be analyzed and understood more simply

due to the decoupling of the input side network from the

output side network.

2) Gain Maximization after Unilateralization: The

interpretation of U as a gain maximum can now be under-

stood. Consider the device embedded within a unilater-

alizing network that meets the specified conditions, as

shown in Fig. 1(b), and let the open-circuit impedance

matrix of the transformed device be represented by Z’.

Since the transformed device is unilateral,

z[~ = o. (15)

Consider next the power gain of the transformed device,

operated between the source and the load networks. If the

source and the load networks are varied for maximizing

the power gain, their impedances will attain a value equal

to the complex conjugate of the input and the output

impedances of the device, respectively, provided both Re

[Zjl] and Re [~z] are positive; i.e., the unilateralized de-

vice is absolutely stable. Under these conditions, the

power gain is given by

u= IZ?112
4 Re [Z; ~] . Re [Z~z] “

(16)

But, from (7), this is also the value of Mason’s invariant

U for the transformed device under the condition (15).

This establishes that the maximum power gain of the

transformed device equals the U of the device. Moreover,

since this argument holds for every lossless reciprocal

embedding network, and since the U value is invariant to

the embedding, every unilateralizing embedding must re-

sult in the same value of maximum power gain for the

device, and this value is equal to the U of the device.

Under what conditions is the unilateralized device ab-

solutely stable [6] (i.e., the real parts Re [Z~l] and [Z~2]

of its open-circuit input and output impedances are both

positive)? It is cIear by inspection that the embedding

network of Fig. 3 leaves Re [22] unchanged, and that

Re [Zl J and Re [Zzz] must have the same sign if U is

positive. Therefore, if Re [%2] and U were known to be

positive, an embedding network could be found that would

make the device unilateral and absolutely stable. By mov-

ing the reactancejX2 from the output port to the input port

in Fig. 3, a similar conclusion can be reached if both Re

[211] and U are known to be positive. Finally, if U > 1,

both Re [Z; J and Re [Zj2] can be made positive regardless

of the sign of Re [Zl 1] and Re [222]. In conclusion, the

necessary and sufficient conditions for the unilateralized

device to be absolutely stable are as follows:

(1) U is positive, and at least one of the two resistances
RI ~ = Re [Zl ~] and R2Z = Re [222] is positive; or

(2) U is greater than unity (when neither RI ~ nor R22 is

positive).

3) Constraints Imposed in Gain Maximization: The

conditions imposed on the embedding network, under

which U has been shown to be a gain maximum, are very

important for the proper interpretation of U, since U is

neither the only gain maximum that can be defined (i. e.,

other gain maxima also exist), nor the global or the high-

est maximum (i. e., power gain values higher than U can

be achieved by proper embedding). These two statements

are now briefly explained.

U is not the highest power gain that can be obtained

from the device in an arbitrary circuit. Indeed, if the de-

vice is active (U > 1), the maximum power gain obtain-

able from the device is infinite, which is in evidence when

the device is used in an oscillator circuit. The power gain

of a linear twoport in a fourport embedding will neces-

sarily have a finite maximum value with respect to the

source and load impedances only under certain condi-

tions, e.g., when the device is passive, or if active, it is

absolutely stable and does not have a feedback path be-

tween the output and the input ports. lt is clear that a gain

maximum can be defined only if some restrictions are

placed on the device and/or its embedding network.

Consider next the need for the conditions imposed on
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the fourport embedding network in defining U. Each of

the two constraints, of Iosslessness and reciprocity, is

essential for defining a gain maximum for an active device

in general. Indeed, Leine [7] shows by examples that if

the embedding is lossless but not reciprocal, or if it is

reciprocal but not lossless, the maximum power gain of

the device in the circuit of Fig. 1(b) is unbounded if the

device is active. The two constraints under which U is a

maximum gain are thus also the minimum conditions for

the existence of a finite power gain maximum when the

device is embedded in an arbitrary fourport.

Finally, the importance of the unilateralization require-

ment can be demonstrated by a counter-example. In the

special case where the fourport embedding network con-

sists of two decoupled twoports, one at each port of the

device, as shown in Fig. 1(c), the conditions for the ex-

istence of a gain maximum can be expressed entirely in

terms of the device parameters, without imposing the re-

quirements of losslessness and reciprocity on the embed-

ding network. The stability factor k defined in (11) serves

as a test of stability, and if its value at a given frequency

is greater than 1, the device is absolutely stable, thereby

ensuring that the maximum gain is finite. In this case,

however, the maximum power gain (attained under si-

multaneous conjugate matched conditions at each port) is

[8]

G..=(2u-1)+2~ (17)

and this can be larger than U. In the limit of large U, this

approaches the value 4 U. It is clear that U is not a gain
maximum unless the device is first unilateralized by the

embedding network.

4) Other Gain Maxima: A clearer understanding of the

meaning and significance of the unilateral power gain U

can be gained by comparing it with other kinds of power

gain maxima determined under different conditions. A

number of different power gain maxima have been defined

in the literature, and are used in microwave work, from

which Mason’s unilateral power gain should be distin-

guished. These include the maximum available power gain

G~, [3], Rollet’s maximum stable power gain G~, [9],

and Kotzebue’s maximally efficient power gain G~~ [10].

Their definitions and expressions are compared in Table

I. The range of applicability and utility of these various

power gain maxima are different. As an example, for

many transistors at low frequencies, where Rollet’s [9]

stability factor k < 1, G~~ becomes infinite and is there-

fore defined only at higher frequencies where k > 1; the

other three gain maxima of Table I exist even if k < 1.

In particular, U is defined regardless of whether the de-

vice is active or passive, and absolutely stable or poten-

tially unstable.

B. U as a Measure of ActiviQ

The unilateral power gain U is not useful as a design

goal or guideline, unless the active device is actually to

be unilateralized. Its utility stems from the fact that U is

intimately related to the property of device activity. In

fact, it not only serves as an indicator of activity in the

device, but also as a quantitative measure of the device

activity. This direct relationship with the property of ac-

tivity makes U a quantity of fundamental importance.

The conditions under which a linear twoport device is

active can be expressed in many different forms [6], and

in terms of different network parameters. When expressed

in the frequency domain, for real sinusoidal signals (i. e.,

at a single frequency s = O + jti lying on the imaginary

axis in the complex frequency plane), and in terms of the

impedance matrix of the twoport at that frequency, the

condition is as follows. The twoport is active if any of the

following conditions holds [6]:

(1) I?ll = Re [211] <0 (18a)

(2) RZ2 = Re [Zzz] <0 (18b)

(3) det [Z + Z:] <0. (18c)

A device satisfying one (or both) of the first two con-

ditions is said to have a “negative-resistance activity. ”

By contrast, a,device meeting only the third condition (and

neither of the first two) is said to have a “transfer activ-

ity. ” The transfer active twoports are of particular im-

portance because they form the backbone of electronics,

and include such devices as triodes, pentodes, bipolar

junction transistors, and field-effect transistors. We now

show that the condition of transfer activity can be ex-

pressed entirely in terms of U as follows.

This condition, given in (18c), can be written in the

following form after some algebraic simplification:

4 (R1l RZZ – RIZR1l) – 1212 – ZZ112 <0 (19)

where Rti denotes the real part of Zti. If the given device

has no negative resistance activity after it has been uni-

lateralized by a linear lossless reciprocal fourport embed-

ding, it follows that

R~l > 0 and R~z > 0. (20)

For such a device, Mason’s unilateral gain U must nec-

essarily be positive, since (16) shows that U is positive

after unilateralization, and U is invariant to the embed-

ding. But if U > 0, it follows from (7) that the first term

on the left-hand side of ( 19) is positive; then the condition

of activity in (19) can be written with the help of (7) as

U>l (21)

The magnitude of U can therefore be used to test for the

presence of transfer activity in a twoport. Moreover, if

the U of a given device is a function of frequency (which

is the case for all physical devices), the value of U can be
used to identify the frequency range over which the device

remains active.

C. U as a Canonical Property

One particularly illuminating method of understanding

a characteristic property shared by all members of a set is
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TABLE I

LINEAR TWOPORT POWER GAXN MAXIMA USED AS FIGURES OF MERIT

Expression in Expression in

Symbol Name Definition or Conditions Immittance Parameters [,S] Parameters

Maximum (1I G, maximized with respectTransducer gam lY2, /Y,21’

Available to I’~ and I’~ (or available gain with respect
where

G Gain
X+-’

ma tO r~) ~(kfm)
2 Re [Yl,] Re [YZd – Re [Yu Y21] 12

~=
I Y,, Y,, 1

Maximum Device just stabilized [i.e., k = 1 obtained(z)]

G
Y21

Stable Gain by resistive loading; then G, maximized with
S2,

Ins
respect to r~ and r~.

~ g

Maximum (q) G reached when the powerPower gam

Efficient

s2,2_1
added by device (for a fixed input power) has

G Gain been maximized with respect to r~.
I Y2,1’ - \ Yl,l’ 12

me 4 Re [Yl, Y,,] – 2 Re [Y12Y,1] – 21 Y1212

‘i-l- 1,
S*,
S,z

Unilateral G, maximized with respect to r~ and r~, S*, _lz

Power after device has been unilateralized (i.e., Sj2

u Gain
lx,, - Y,ll’ G

= O attained) by lossless reciprocal
embeddmg. 4 (Re [Yl,] Re [Yzj] – Re [Ylz] Re [Y2,])

()

2k$_2Re ~

S,2 s,*

L1)Transducer power gain G~([S1, rG, rd = (1 - Ircl’) Isz,l’(l – lr~l’)
I(1 - ,sI,rc)fl - s,zr~) – s,, s,, rcr=lz

1 – 1s,,1’ – 1s2,12+ 1s11s,,– S12S2112(2)~Umkawa>Sstability factor k =
21s,21 Is,lt

1s2,1’(1- Ir=l’)
(q]power gain G([SI, r~) =

11 – szzr~lz - Is,, – r~fs,,sz, - S,zsl,)l’

through the use of a canonical representation of the set.

A canonical form for a class of networks is the clearest or

simplest form, employing the least possible number of pa-

rameters, to which the given class of networks can be re-

duced by the allowed type of transformations, and which

displays the common characteristics of the class, or the

constraints imposed by them, in an easily understood way.

Consider the set of all twoports that can be formed from

the given twoport by linear lossless reciprocal transfor-

mations of the type shown in Fig. 1(b). A characteristic

property of the set, established by Mason, is that every

member of the set has the same unilateral power gain U.

Since U is claimed to be the only invariant property of

this set, it should be possible to develop a canonical net-

work for the set with only one parameter. Such a ‘ ‘mini-

mum” form for the above mentioned set of twoports is

developed in this section. To keep the discussion intui-

tive, the following development employs the open-circuit

impedance matrix of the twoports; an alternative ap-

proach employing scattering matrix is also available in the

literature [1 1].

A linear twoport with a given impedance matrix can be

represented by the equivalent circuit shown in Fig. 4(a).

This twoport can be reduced to the canonical form shown

in Fig. 4(f) through the use of linear lossless reciprocal

transformations. The successive steps in this reduction are

illustrated schematically in Fig. 4, and are as follows:

(i) As demonstrated in Section III-A, it is always pos-

sible to find a lossless reciprocal transformation which will

make the twoport unilateral, as shown in Fig. 4(b). One

such transformation is the feedback network of Fig. 3.

The impedance matrix elements of the resulting unilateral

twoport are given by

z~, = z~~ – (R12/R22)&1 (22a)

Z~2 = 32 + j [(R2Z /R1z)X12 – X22] (22b)

Z.j, = q~ – z,,. (22C)

(ii) The imaginary parts of the two driving point
impedances Z; 1 and ~2 can be reduced to zero by reac-

tance padding at each of the twoports, which is also a

lossless reciprocal transformation. As a result of this

transformation, the two impedances become

R[l = Re [Z~l] (23a)

Rj2 = Re [Z~2]. (23b)

(iii) The twoport can be impedance matched to a de-

sired real reference impedance RO at both ports, with the

help of a real transformer at each port, which is also a

lossless reciprocal transformation. The only element of

the impedance matrix that is left flexible after this trans-

formation is

‘;l=J+&” (24)
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I I

(a) GIVEN ‘IWOPORT

(b) AFTER UNILATERALIZATION

(c) AFTER REACTANCE PADDING

ra m(—---r.PADDED

0 TWOPORT

(d) AFTER BILATERAL MATCHING

BILATERALLY-
MATCHED
TWOPORT

(e) AFTER ADDITION OF LINE LENGTH

~__––- --. -.- —---- ——-..- ——--—

=!ih Eit
L-________ ---–_______ J–--___J

(f) THE CANONICAL FORM

Fig.4. Deduction of thecanonical network fortieset oftwopofis created
by lossless reciprocal embedding of a given twoport.

(iv) Finally, alossless length oftransmission line, hav-

ing a characteristic impedance RO can be added at either

port, and its length adjusted, until the twoport has a real

transfer impedance. The resulting twoport is the canonical

form of Fig. 4(e), and has an impedance matrix

(25a)

where

which can be demonstrated with the help of (24) and (7).

The canonical network of Fig, 4(f) is the circuit repre-

sentation of the impedance matrix in (25). It is clear that

the canonical form of the twoport requires only a, single

real parameter for its specification.

The canonical representation provides an alternative

interpretation for Mason’s invariant U of a given twoport.

The scattering matrix of the canonical network can be

found from the impedance matrix, and is given by

rOOl

““l--’-l” (26)

As might have been anticipated, if a given twoport is

transformed, by a lossless reciprocal transformation, to a

unilateral, phase-shift-less, matched twoport, matched at

each port to a resistive reference impedance, the scatter-

ing matrix of the resulting twoport is completely de-

scribed by the forward transfer function. By definition of

scattering parameters, this transfer function is equal to the

square-root of the unilateral power gain.

D. U as an Invariant of Bilinear Transformations

From a formal and abstract viewpoint, any embedding

network can, be viewed as simply a mathematical trans-

formation applied to the terminal characteristics of the

device embedded within it. The fact that the U of the

embedded network does not change when the embedding

device is restricted to be of certain types suggests the

possibility that U may be interpreted as a geometrical or

an algebraic property that is invariant under the class of

mathematical transformations representing the permissi-

ble embedding. Such an interpretation of U is described

in this section. For clarity of exposition, the line of rea-

soning is presented here with emphasis cm its essential

elements and plausibility rather than on the highest pos-

sible rigor and generality. Accordingly, the twoport under

consideration in this section may be assumed to be passive

so as to avoid complications (e. g., twoport instability on

matching, and reflection coefficients that lie outside the

unit circle), although the results can be generalized.

1) A Matched Circuit Model: Bilateral impedance

matching of a linear twoport consists in embedding the

given twoport such that the embedded network has the

following property: with either of its ports terminated in

the reference impedance, the input impedance looking into

the other port is equal to the same reference impedance.

In practical applications of linear twoports, it is common-

place to attempt to carry out this impedance matching at

each port without introducing either additional losses or

nonreciprocal elements. Theor&ically, a lossless recip-

rocal embedding network can always be found that will

make the twoport bilaterally matched. Consider the given

twoport embedded in one such matching network, as

shown in Fig. 5(a). The bilateral matching of the twoport

is most readily apparent when the twoport is described in

terms of its scattering parameters (defined with respect to

the same reference impedance at the two ports):

.[1o p,
‘ =

P2 o

(27)

where PI and p2 are two complex numbers. This represen-

tation suggests a very simple equivalent circuit model for
the matched twoport, shown in Fig. 5(b). This model em-

ploys an ideal fourport circulator and two oneports having

reflection coefficients equal to the reverse and forward

transmissions PI and P2 of the matched twoport.

The unilateral gain U of the circuit modlel of Fig. 5(b)

can be found by substituting the [S] matrix elements from
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Fig. 5. Interpretation of U as a hyperbolic distance and a cross-ratio.

(27) into (10):

~= IP2 -PII

[1 - p~p21
(28)

This is then also the U for the given twoport, since the

model differs from the original twoport only in respect of

a lossless reciprocal embedding which leaves the U un-

changed.

The matching network shown in Fig. 5(a) is, of course,

not unique; as a result neither are p 1 and p2. Consider now

the set of all bilaterally matched twoports that can be cre-

ated from the given twoport by embedding it in different

Iossless, reciprocal fourport embedding networks. Since

the inverse of a lossless reciprocal transformation is also

a lossless reciprocal transformation, all twoports belong-

ing to the set can be viewed as lossless reciprocal trans-

formations of the matched twoport of Fig. 5(a), or that of

its equivalent circuit model shown in Fig. 5(b). This is

indicated in Fig. 5(c), which represents an arbitrary mem-

ber of the set. Since each member of the set is bilaterally

matched, it should also be possible to represent it by an

equivalent circuit model of the type shown in Fig. 5(b),

but with a different pair of reflection coefficients, say p;
and P;. Indeed, the oneports having reflection coefficients

p{ and p$ can themselves be viewed as transformations of

the oneports having reflection coefficients p 1 and p2, as

shown in Fig. 5(d). Imposing the constraints of lossless-

ness and reciprocity on the embedding network of Fig.

5(c) leads to the conclusion that a single lossless twoport

can transform p 1 and P2 into p; and pi respectively. The

two twoports appearing in Fig. 5(d) are therefore identi-

cal.

We thus arrive at the crux of the argument. The circuit

of Fig. 5(d) is a model for the given twoport, embedded

as shown in Fig. 5(a), and a change in the embedding

network causes a change in only the Iossless twoports N,

but not in PI and pz. Therefore, a function of the oneport

reflection coefficients p 1 and p2, that is invariant to loss-

less embedding by N, is also an invariant of the given

twoport under the permissible class of embedding. Such

an invariant function of p 1 and p2 can be found by either

a geometrical or an algebraic technique; both of these are

described below in that order.

2) A Geometrical Interpretation: Prior to the advent

of computer-aided circuit analysis and design software,

impedance transformation and microwave circuit design

calculations were often carried out with the help of graph-

ical constructions, and many graphical aids, charts, and

procedures were developed for this purpose. Some of these

techniques are based on the use of concepts and results

from non-Euclidean geometry. An introduction to the

concepts of non-Euclidean geometry, and their applica-

tions in electrical engineering, will not be attempted here;

a tutorial exposition [12] and a survey of applications [13]

are available in the literature, and include citations to

many other references. The following discussion is lim-

ited to the one result from hyperbolic geometry that is

required for the present purposes.

Very briefly, a hyperbolic geometry is a non-Euclidean

geometry in which Euclid’s axiom of parallel lines is not

employed, and the sum of the angles of a triangle does

not equal 27r radians. As in any geometry, the distance

between two points can be defined with some self-con-

sistent metric, having the properties of additivity and a

zero. In the Poincar6 model shown in Fig. 5(e), the in-

terior of a circle serves as the two-dimensional hyperbolic

space, with the periphery (called the “absolute”) being

infinitely far. The geodesics (which, analagous to Euclid-

ean “straight lines, ” are lines of shortest length between

any two points on the lines) are circles that approach the

absolute at right angles. The distance between two points

is measured along the geodesic, and can be algebraically

expressed as the logarithm of a ratio, as shown in Fig.

5(f). One of the basic results from this model is the in-

variance of the hyperbolic distance between two points.
The hyperbolic distance between two points can be

given a circuit interpretation [14]. Let the two points in

the complex plane be represented by complex numbers p ~
and p2, and consider two oneport networks having the re-

flection coefficients equal to PI and p2. Further suppose

that a lossless twoport N is designed such that it trans-

forms the first oneport to a perfectly matched load, i.e.,
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the transformed reflection coefficient pi = O. If the same

network N is used to transform the second oneport, its

reflection coefficient will become p;. The voltage stand-

ing wave ratio (VSWR) of this transformed oneport does

not depend on the choice of N, and when expressed in

some logarithmic unit such as dB or nepers, is the hyper-

bolic distance between PI and pa. This is given by

MPI, pJ = in 11-‘Yp”l + IP1 - p’[
11- pfp,l - Ip, - p,[ “ ’29)

In summary, if the complex numbers pl and pz repre-

sent reflection coefficients of two oneport networks, the

hyperbolic distance 6(P1, Pz) between them does not

change when both oneports are transformed through the

same lossless linear twoport. This basic result has been

applied, and rediscovered, in numerous applications. For

example, the figure of merit of two-state switching diodes

[11], that is invariant to lossless transformations, is sim-

ply the hyperbolic distance between the impedances of the

diode in its two states.

This result can now be applied to the circuit model of

Fig. 5(d). Although pi and p; in this model are not unique,

the hyperbolic distance between them is. Moreover, since

the distance ~(pl, p2) is invariant to N, so is any function

of 6; in particular:

IP1 - P21

‘A ‘6’2) = 11- p~p’[
(30)

is independent of the matching network of Fig. 5(a). This

is the same as the unilateral gain of (28). Thus U may be

interpreted as a function of the hyperbolic distance be-

tween the forward and reverse transmissions of the bilat-

erally-matched twoport.

3) An Algebraic Interpretation: An algebraic interpre-

tation is closely related to the above. The reflection coef-

ficient P of a linear oneport, when viewed through an

embedding linear twoport, undergoes a transformation of

the form

ap+b
P’=—

cp+d
(31)

where a, b, c, and d are four complex numbers, and are

characteristics of the embedding twoport. If the trans-

forming twoport is ‘constrained to be lossless, the four

complex numbers are also constrained, and the most gen-,

eral form that this transformation can take is as follows:

, _ exp (ja)p + A exp (j(il)

p ‘4exp[j(a–i3)]p + 1
(32)

where A, a and D are all real constants. The reflection

coefficients P[ and p; in Fig. 5(d) can therefore be ex-
pressed in terms of PI and p2, and when these are substi-

tuted for P1 and p2 in the expression for unilateral gain

given in (28), the value of U is found to remain un-

changed.

A more general interpretation of U along the above lines

is possible. A bilinear Mobius transformation [15] is a

mapping that takes a given complex number Z into an-

other complex number W (the “image of Z‘) given by

aZ+b
w=—

CZ + d,
(33)

where a, b, c and d are complex constants. This is a com-

monly occurring transformation in the theory of linear

networks, and the relationship. between many pairs of

quantities of interest takes this form, e.g., an impedance

and the corresponding reflection coefficient, or the input

impedance and the load impedance of a linear twoport.

Supplemented by the convention that W = a/c for Z =
co, and W = co for Z = – d/c; this transformation is both

a conformal and a topological mapping of the extended

plane onto itself, the topology being defined by distances

on the Riemann sphere. Such a mapping is uniquely de-

fined by specifying three distinct points in the Z plane,

and their corresponding images in W plane (i. e., there is

one and only one transformation for which this would be

true).

The bilinear transformation has a number of remarkable

geometrical properties, one of which is the invariance of

the so-called “cross-ratio.” The cross-ratio of four com-

plex numbers Z1, ~, Z3, and Zd is the image of Z1 under

a linear transformation which carries Z2, Z3, and Z4 into

1, 0, and m (provided that Z2, Z3, and Z4 are distinct from

each other). It is given by

(Z1 – z3)/(zl -- ZJ

C(Z1’ “ ‘3’ ‘4) = (Z2 – z3)/(z2 -- ZJ “
i34)

The cross-ratio has some interesting properties; for ex-

ample, it is real if, and only if, the four numbers Z1, Z2,

Z3, and ZA lie on a circle. The one property of the cross-

ratio relevant to the present discussion is its invariance

under a bilinear transformation: if WI, W2, W3, and WA

are the images of Z1, Z2, Z3, and Z4 under the transfor-

mation in (33), then

(z, – Z3) (z’ – Z4) _ (w, – WJ (w’ - W4) (35)

(Z1 – Z,J (z’ – Z3) – (W1 – W4) (WZ - W3) “

The hyperbolic distance defined in Fig. 5(f) is in fact

based on a cross-ratio.

An embedding network can be viewed as a bilinear

transformation [16], and Mason’s U as a Special case of

the cross-ratio. A proof of this statement, lpresented in a

more general setting, is contained in Section V-A below.

, IV. APPLICATIONS OF MASON’S INVARIANT U

The results of Mason’s paper have “been employed in

numerous ways since their publication. The first applica-

tion, which originally motivated the work, was to the bi-
polar junction transistor, an active device then in its in-

fancy. When biased in its active region, and operated

under small-signal conditions, this device could be rep-

resented by a linear twoport, so that a bias and frequency

dependent U could be defined for it. Several authors de-

termined the unilateral power gain of the early germanium
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transistors as a function of frequency, discussed the effect

of various transistor equivalent circuit elements on the

value of U, and thus deduced the limitations on the range

of frequencies over which the transistors could be em-

ployed as active devices [17], [18]. Some of these appli-

cations are described in this Section.

A. U as a Figure of Merit

Prior to Mason’s discovery of the invariant U, and for

sometime thereafter until the importance of U was widely

recognized, there was general uncertainty about the choice

of a measure of device performance that should be used

to describe the capability of a device in delivering power

at high frequencies. As an example of this uncertainty, in

the early work on bipolar junction transistors, a number

of different types of power gains were used to evaluate

the high-frequency performance of the device, including

maximum available power gain [19], and the maximum

attainable power gain when the source impedance is con-

strained to be purely resistive [18]. When used as a device

figure of merit, these parameters have a number of limi-

tations; e.g., they are influenced by conditions external

to the device, and they depend on the manner in which

the transistor is connected in the circuit (e.g., common-

base versus common-emitter). The invariant U provided

the device designers with a fundamental criterion for

judging the goodness of a device. Moreover, since a com-

mon-emitter connection can be transformed into a com-

mon-base connection simply by embedding the former

within a lossless reciprocal network composed of wires,

U is invariant with respect to the method of connection,

and serves as a more useful measure of device perfor-

mance. An alternative proof of the invariance of U to the

choice of input and output terminals may be given in terms

of the indefinite admittance matrix [20].

Perhaps the most convincing evidence of the utility of

the concept of a unilateral power gain as a device figure

of merit is the fact that for the last three decades practi-

cally every new active twoport device developed for high-

frequency use (and some passive ones as well [21], [22])

have been carefully scrutinized for the achievable value

of U, the frequency dependence of U, the influence of

device parameters on U, and the design techniques for

enhancing the device U. Published accounts of these ef-

forts include the analysis of

1) Bipolar junction transistors by Statz, et al. [17];
2) Transit-time transistors by Zuleeg and Vodicka [23];

3) Junction FET’s by Das and Schmidt [24];

4) Silicon MOSFET’S by Bums [25];

5) Dual-gate MOSFET’S by Burns [25];

6) GaAs MOSFET’S by Mimura, et al. [26];
7) Microwave Silicon MESFET’S by Baechtold and

Wolf [27] ;

8) GaAs MESFET’S by Bechtel, et al. [28];
9) HEMT’s by Vickes [29]; and

10) Hetero-junction Bipolar transistors by Prasad, et al.
[30] .

Since the U was recognized as an important figure of

merit of the device, its measurement was necessary for

comparing the transistors, and for measuring the progress

in their design. Accurate methods for the measurement of

U were therefore developed, and the measurements were

employed in the characterization of the transistors [31].

There are two different ways of determining the uni-

lateral power gain of a given device at a specified fre-

quency: one is by a direct experimental measurement in

which a device is unilateralized and its power gain is ex-

perimentally maximized, and the other is by computation

from the measured network parameters of the device. The

former method is now obsolete, and the measurement of

U for high-frequency devices is now almost invariably

carried out with the help of an automatic network ana-

lyzer. The measured scattering parameters of the transis-

tor can be used to determine the U in two different ways:

either by a direct substitution of the network parameters

in the expression for U given in (10), or by first fitting the

measured parameters to a device equivalent circuit, from

which U can be calculated in terms of the fitted values of

the circuit elements appearing in the equivalent circuit.

The agreement between the two possible estimates of U
depends on the degree of fit (i.e., on the accuracy of the

measured data, and the validity of the equivalent circuit).

Despite the fact that U is a more fundamental and ele-

gant measure of active device capability, it is not used as

widely in the electron device community as some of the

other figures of merit, particularly the maximum available

gain G~. (e.g., [32]). There are several reasons for this:

(a) For many devices and conditions, the values of U
and G~8 are not far from each other [33]. This small

difference is especially unimportant when the gain

is large.

(b) All power gains are equally easy to calculate from

the immittance or scattering parameters. But when

they are determined directly from an equivalent-

circuit model of the device, U is less obvious due

to the need to unilateralize the model.

(c) In some cases, U is not the most convenient or

practical parameter. For example, if the twoport

under consideration is a frequency converter, the

unilateralizing circuit must also be a frequency

converter so that the feedback is compatible. Such

a feedback circuit is easier to use in thought exper-
iments [34] than in laboratory experiments.

B. U as an Indicator of Activity

A related application of the idea of U has been in clar-

ifying the conceptual problems. The direct relationship of
U to activity helps identify a passive network, or con-

strain the kind of performance expected from it. One ex-

ample of the kind of misunderstanding that can be cleared

through the use of U is given in [8], where Singhakowinta

and Boothroyd [8] showed how to avoid a misunderstand-

ing caused by earlier authors who had treated an unreal-

izable feedback network as passive.
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C. Definition of f~,X

An evaluation of the relative power gain capability of

two active devices requires, in general, a comparison of

their U values over the entire frequency range of interest,

since the unilateral power gain U is a function of fre-

quency. (Only if the nature of the frequency dependence

of U( f) is known in advance, or is restricted, for example

by confining the consideration to a single type of active

devices, it may be sufficient to compare devices on the

basis of their U values at just one frequency.) Clearly, it

would be convenient and desirable to have a single-num-

ber measure of the quality of active devices. Such a sim-

ple, and highly practical, figure of merit can be derived

from the unilateral gain U(f), and is called the maximum

oscillation frequency j&X; it is defined as the frequency at

which U becomes unity, i.e.,

U(f)lf=fmax = 1 (36)

If the unilateral power gain is a monotonic function of

frequency, as is usually the case, ~~aX is a well-defined,

single-valued parameter. It is commonly used as a mea-

sure of the high-frequency capabilities of an active de-

vice. Its significance follows from the property of U ex-
pressed in (21) (that U exceeds unity for an active device).

The maximum frequency of oscillations is therefore also

the maximum frequency of activity.

The concept of a highest frequency above which power

gain ‘cannot be obtained from an active device, that had

long been known from practical experience, thus became

established on firm -theoretical grounds with Mason’s

work, and was discussed in the literature immediately

thereafter [17]. The first explicit mention of the~~.X in the

literature appears to be due to P. R. Drouilhet [35], who

defined it, deduced an expression for it, and measured it

for transistors.

The value of~& also serves as a benchmark, indicating

the level of development of active device technology.

Thus, the state-of-the-art values of&X were of the order

of 109 in the 1950s, of the order of 1010 in the 1970’s,

and are of the order of 1011 in the nineties.

In principle, -there are three different methods of mea-

suring the &X for a given two-port active device. The

most direct, and conceptually the simplest, is the one in

which the device is embedded in an oscillator circuit, with

the input and output circuits incorporating a tuner (a low-

10SS two-port with variable impedance matrix), and at-

tempts are then made to produce oscillations in the circuit

at as high a frequency as possible. The accuracy of this

manual method is dependent on the losses in the tuners,

and the sensitivity with which the presence of a oscilla-

tions can be detected against the background noise. A

more modern and efficient metho,d of~&X measurement is

through the use of an automatic network analyzer, which

typically yields S parameters of the two-port; then the

unilateral power gain can be calculated as function of fre-

quency from the measured S parameters by (10), and the

frequency at which it drops to unity can thus be found.

Another commonly used method utilizes the measured S

parameter data to deduce the values of the circuit ele-

ments in an equivalent circuit of the device by a numerical

best-fit; the maximum available gain of the device is then

calculated from the equivalent circuit, and the frequency

at which it drops to unity can be calculated in terms of the

equivalent circuit elements. If the equivalent circuit is

physically based, this method allows extrapolation of the

results to higher frequency; the need for this is explained

below. If the measurement and circuit modeling errors are

small, the results obtained by the various methods can be

in good agreement, as demonstrated for MESFET’S [27]

and HBT’s [36].

An accurate measurement of U as a function frequency,

in the neighborhood of the high frequencies where it is

unity, has always been difficult for state-of-the-art de-

vices. (The &X for modern transistors lies in the mm-

wave and sub-mm wave range, where there are no accu-

rate automatic network analyzers; and even in the earlier

decades, when the &X values were lower, so were the

capabilities of the contempora~ instrumentation.) As a

result, the reported values of j&X for transistors are often

based on the measurement of U as a function of frequency

over a range of frequencies (typically, well below j&X),

and then an extrapolation of the U to higher frequencies.

The extrapolation implies an a priori knowledge of the

nature of frequency variation. of U, usually based on the

physical reasoning or a known equivalent circuit for the

device [37].

Interestingly, the frequency at which U attains the value

of 1 is also the frequency at which the maximum stable

gain G~, and the maximum available gain G~, of the de-

vice also become unity. As a result, alternative interpre- s

tations can be given to the quantity ~~aX. More important,

it is not necessary to measure U(f) in order to determine

.&,.; one of the other gains can be used if it is easier to
measure (and more reliably extrapolate). Malny of the ear-

lier papers on this subject [33], [38], [39] either state, or

imply through graphical plots, that the frequency at which

U becomes unity is higher than the ones at which G~, or

G~a become unity. This notion is incorrect, and a formal

proof of their equality has been published [40].

Several different cutoff frequencies of active devices

(and in particular transistors) have been discussed in the

literature. In addition to &X, these include the lowest (or

dominat) pole frequency in the device transfer function;

the low-pass cutoff frequency of an R-C network at the

input or the output port of the device;, a cutoff frequency

due to phase delay (e.g., caused by the carrier transit-time

in the device); the unity short-circuit current gain fre-

quency ~~ [41]; and the highest natural frequency of a net-

work with multiplicity of active devices. The~&X is a fun-

damental characteristic of the device, and has the physical

significance that it is the maximum frequency of oscilla-

tion in a circuit in which the following three conditions

are met: (i) there is only one active device present in the

circuit, (ii) the device is embedded in a passive network,

and (iii) only single sinusoidal signals are of interest.
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If these conditions are not met, a device may be made

to produce oscillations at frequencies higher than~&, and

it is possible to define other cutoff frequencies that are

variants of&X. For example, in integrated circuits, it is

commonplace to have multiple active devices, or equiv-

alently, an active device embedded in an active network.

In such circuits, a more useful measure of the high-fre-

quency capability of the device maybe the power transfer

cutoff frequency fpT [42], which is the frequency of unity

power gain with no unilateralization and with a load con-

sisting of another identical device. Still another cutoff fre-

quency suitable in integrated circuits is the maximum fre-

quency of oscillation achievable in a circuit in which

multiple identical copies of the device are permitted. Such

a generalization of~&X has been discussed in the literature

[43] .

V. GENERALIZATIONS OF U OTHER NETWORK

INVARIANTS

Invariant properties of networks are interesting and im-

portant because an invariant parameter that is a charac-

teristic of the network can be put to many uses. One pos-

sible use of an invariant parameter is as a figure of merit

of the network, that can serve as a basis for comparing

different networks, for quantifying the change in a net-

work caused by some design modification, and for mea-

suring the progress towards a design goal. A second po-

tential use of an invariant parameter is as a reference or a

benchmark value that can be used to check the accuracy

of a computation, modeling, or measurement of the net-

work characteristic, by verifying whether the value of the

parameter has remained unchanged. A third use of in-

variant is in identifying the limitations to the perfor-

mance of a network, establishing the bounds on attainable

characteristics, and determining the feasibility of some

design goal. As a result of their utility, many different

invariant properties of networks have been discovered

over the years.

All known invariant parameters of networks can be

classified into two groups based on the manner in which

they are deduced [44]. One group, called “quasi-power

invariants, ” consists of quantities that have the dimen-

sions of power, or are functions thereof. Such invariants

can be deduced from Tellegen’s theorem, or from a more

general matrix constraint expressing the linear time-in-

variance of the embedding network.

The second group of invariants consists of dimension-

less quantities that follow from the cross-ratio invariance

property [16] of bilinear transformations, or from its ma-

trix generalization [44]. Mason’s V is only one, and the

earliest discovered, of the dimensionless invariants of the

cross-ratio type. Other invariants of this type can be

viewed as generalizations of Mason’s invariant U, and are

introduced here briefly.

Mason’s method of search for the invariant property of

the twoport not only proves that U is an invariant, but also

simultaneously establishes that it is the only invariant

meeting the stated specifications. Therefore, the search

for still other network invariants is futile unless the spec-

ifications of the problem are changed. One way of chang-

ing the problem specification is by relaxing one or more

of the constraints imposed on the device and the embed-

ding network in Mason’s work. Mason’s statement of the

problem of network invariant search, given in Section

II-B, contains the following constraints:

(a)

(b)

(c)

(d)

that the device has exactly two ports;

that the network parameters of the device are con-

stant (i. e., the device is time-invariant);

that the embedding network is necessarily Iossless

and reciprocal; and

that the embedding network has four ports (i.e., the

number of ports of the device remains unchanged

upon embedding).

Network invariants can be found without some (or all)

of these constraints, and the resulting invariants can be

viewed as generalizations of Mason’s U. Interestingly

enough, some of these invariants had already been dis-

covered independently, and out of necessity in some ap-

plications, before a more systematic search for them was

undertaken [45]. A number of these invariants, such as

those for characterizing the switching devices and the

high-Q varactors, find applications in microwave engi-

neering. The possibility of still other extensions and

variations of Mason’s invariant problem, based on net-

work parameters other than impedance matrices, or

broadband constraints, or nonlinear networks, or transfer

rather than driving point functions, have also been briefly

discussed in the literature [45], [46].

A. Generalization to n-Ports

In the problem of Section II-B, if the device under con-

sideration is taken to be an n-port, and the linear lossless

reciprocal embedding network is simultaneously allowed

to be a 2n-port, an invariant generalized power gain can

be deduced.

As a generalization of the cross-ratio of four complex

numbers, given in (34), one can define a cross-ratio of

four n x n ‘matrices 21, 22, 23, and 21, which is another

n x n matrix given by

R = [Zl – 22][21 – 23]- 1[[24 – 22][21 – ZJ-l]-l.

(37)

The four given matrices can be thought of as the open-

circuit impedance matrices of four different n-port linear

networks. Consider now a 2n-port linear embedding net-

work, that transforms each of the four conceptualized n-
ports into another n-port, having open-circuit impedance

matrices Z;, Z;, 2$, and Zj; the cross-ratio of the trans-

formed matrices is then found to be

R’ = HRH (38)

where H is an n x n matrix whose elements obviously

depend on the embedding network. Such a transformation
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of R to R’ is called a similarity transformation, and it

leaves some of the characteristics (such as the eigenval-

ues) of the cross-ratio matrix R unchanged. One of the

unchanged characteristics is the value of the determinant

of R; i.e.,

det [R’] = det [R] =
det [Zl – Zz] /det [Zl – 23]

det [Zq – Zz] /det [2A – Z~]

(39)

regardless of the transforming matrix H (and hence the

embedding network).

This invariance property in (39) can be employed to

develop many network invariants (that are invariant to the

transformation through the 2n-port embedding network)

by appropriate choice of the four given impedance mat-

rices. For instance, if only one n-port, having an imped-

ance matrix Z, is of interest, the four required impedance

matrices 21, Zz, Zq, and 21 can be taken to be Z, Zj, – Z*,

and – Z~, respectively. With these four impedances, the

invariant in (39) becomes

Idet [Z - 2,]12

‘et ‘R] = (det [Z + Z*])*”
(40)

This quantity is an invariant of the given n-port. When

applied to the special case of a two-port, it reduces to the

square of Mason’s U function given in (7). Since the four

selected impedance matrices can be generated from the

given Z by the successive application of two transforma-

tions Z - Zt and Z * – Z*, and these two transforma-

tions commute with the 2n-port embedding provided the

embedding is lossless and reciprocal, not only the numer-

ical value of the det [R] but also its functional form are

preserved under the transformation by such an embedding

network.

If the four impedances were selected in a different or-

der, as Z, Zt, –Z~, and –Z*, the invariant determinant

becomes

ldet [Z - 2,]12

(det [Z + Z~])2
(41)

This invariant has also been derived earlier by other meth-

ods [45]. Still other invariants can be found by other

choices of the four impedance matrices.

B. Generalization to Time-Varying Networks

It has been assumed throughout the above discussion

that the properties of the device are time-invariant. In en-

gineering practice, there are numerous instances in which

a device is expected to perform as a linear network, but

with different parameter values at different times. Exam-

ples of such devices are electronic switches, control cir-

cuits, and parametric devices. In each case, the network

parameters of the device are made to vary in a controlled
manner (or in response to a control signal), either between

two or more distinct values (as in a switch), or continu-

ously with time (as in a parametric device). Many in-

variant of such networks can be found in a manner that

is a generalization of Mason’s method, and some of them

have a useful physical or practical significance.

Perhaps the simplest example of such an invariant is the

figure of merit of a switching diode and has been men-

tioned in Section III-D. If the device under consideration

is a linear oneport, and is capable of existing in two dif-

ferent states having impedances Z1 = RI + j o X1 and&

= R2 + j o X2, the figure of merit is defined as

Q=
\zl --q

2 ~Re [Zl] Re [22]”
(42)

It is a measure of the separation between the impedance

values of the diode in the two states, and serve as a mea-

sure of the usefulness of the diode as a switching element

[47] .

The procedure for deducing the invariants is a direct

application of the general procedure described in Section

V-A, along with an appropriate choice for the four imped-

ance matrices needed to form the cross-ratio of (37). As

the simplest case, consider an n-port linear network that

can exist in two discrete states, and has the open-circuit

impedance matrices 21 and 22 in the two states. One pos-

sible method of generating the four required matrices is

through the use of a transformation, such as Z ~ –Z*.

Then the four matrices are 21, 22, –Z~, and –Z: re-

spectively, and the invariant determinant becomes

Idet [Zl - 22]12
(43)

det [Zl + Zf] “ det [22 + Z~i”

This invariant, specialized to the case of a scalar imped-

ance Z (i. e., a 2-state, one-port linear device) is identical

with Kurokawa’.s “quality factor for switching diodes. ”

Once again, other invariants can be found by alternative

choices of the four impedance matrices. For instance, a

mere reordering of the four matrices as [Zl], [22], [ –Z?]

and [ – Z~] results in the invariant

det [Zl – ~]

det [Zl + 2}]”
(44)

Alternatively, if the matrices Zg and 2X are generated

through the transformation Z ~ –Z: applied to the given

matrices 21 and 22 respectively, the resulting invariant in

(39) would be

det [Zl – 22]

det [Zl + Zit]”
(45)

Both of these invariants, in (44) and (45), when applied

to one-ports, encompass Kawakami’s invariant [48].

Generalization of the above method to 3-state and

4-state networks is straightforward by using the corre-

sponding impedance matrices. An extension to p-state
network forp > 4 is also possible, by defining cross-ratio

matrices R for four matrices at a time, and then forming

a chain of R matrices [45]. This would yield n invariants

of the p-state n-port network. Finally, if the impedance

matrix of the n-port is a continuous functicm of some pa-
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rameter, the set of discrete states can be conceptually re-

placed by a continuum.

C, Generalization to Other Embedding

It is not necessary that the number of ports of the device

remain unchanged when it is embedded; i.e., the embed-

ding network for an n-port device need not have exactly

2n ports. If the embedding has a larger number of ports,

the given n-port device can be conceptually enlarged by

adding disjointed ports with short-circuits at those ports.

When the embedding has fewer than 2n ports, the reduc-

tion in the number of ports causes the invariants to be

replaced by constraints, expressed as inequalities among

the moduli of eigenvalues of some matrices related to the

cross-ratio. Some details of this approach can be found in

the literature [45].
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